SAMformer : Unlocking the Potential of Transformers in Time-Series Forecasting

Romain ILBERT*, Ambroise Odonnat, Vasilii Feofanov, Aladin Virmaux, Giuseppe Paolo, Ievgen Redko, Themis Palpanas

Check my website for code, paper and slides :

1

Accepted as an Oral at ICML 2024

Time Series Forecasting : A Definition

Problem Setup

1. Given past observations, predict future ones

- 2. Univariate (single channel) vs. multivariate (multi-channels)
- 3. Short, medium and <u>long-term horizon</u>

Failure of Transformers in Time Series Forecasting

Main conclusions from Zeng et al., AAAI'23

- 1. Transformer-based methods don't work well in forecasting
- 2. A Linear model surpasses the SOTA FEDformer (ICML'22) in most cases by 20%~50%

Yet Transformers dominate in NLP and vision... Why?

SAMformer (Ilbert et al. , ICML Oral 2024)

A transformer-based TS forecaster that actually works

Simple Toy Regression Example : Pitfalls

Context : Linear Regression Problem

- 1. Linear Transformer severely overfits...
- 2. ... and works better if we freeze the attention...
- ... because the attention get stuck at the identity matrix and does not move afterwards

Pathological behavior suggesting sharp local minima

Simple Toy Regression Example : Solution

1. Sharpness - Aware Minimization (Foret et al. 2021, Chen et al. 2022)

- Smooths the loss landscape => flatter, more generalizable local minima

$$\mathscr{L}_{\text{train}}^{\text{SAM}}(\omega) = \max_{\|\epsilon\| < \rho} \mathscr{L}_{\text{train}}(\omega + \epsilon)$$

SAM = desired solution

SAMformer : Architecture (ILBERT et al, ICML 2024)

Let's put it all together now:

1. **RevIN layer** to be robust to train/test time shift

2. Shallow transformer with a **channel-wise attention**

3. We optimize it with **SAM**

SAMformer : Experimental results

	PatchTST	iTransformer	TSMixer	TSMixer + SAM	Informer	FEDformer	Autoformer	Pyraformer	LogTrans
Improvement	11.13%	3.94%	14.33%	5.25%	72.20%	12.36%	22.65%	61.88%	70.88%

- 1. SAMformer is much better than all transformer-based models...
- 2. ... more robust to random initialization, smaller and more consistent ...
- 3. ... and on par with the Foundation Model MOIRAI

Dataset	H = 96		H = 192		H = 336		H = 720		Total
Dutaset	SAMformer	TSMixer	SAMformer	TSMixer	SAMformer	TSMixer	SAMformer	TSMixer	1000
ETT	50272	124142	99520	173390	173392	247262	369904	444254	-
Exchange	50272	349344	99520	398592	173392	472464	369904	669456	-
Weather	50272	121908	99520	171156	173392	245028	369904	442020	-
Electricity	50272	280676	99520	329924	173392	403796	369904	600788	-
Traffic	50272	793424	99520	842672	173392	916544	369904	1113536	-
Avg. Ratio	6.64		3.85		2.64		1.77		3.73

Dataset	Full-shot	Zero-shot (Woo et al., 2024).				
	SAMformer	MOIRAI _{Small}	$\texttt{MOIRAI}_{\texttt{Base}}$	MOIRAI _{Large}		
ETTh1	<u>0.410</u>	0.400	0.434	0.510		
ETTh2	0.344	0.341	0.345	0.354		
ETTm1	0.373	0.448	0.381	0.390		
ETTm2	0.269	0.300	0.272	0.276		
Electricity	0.181	0.233	0.188	<u>0.188</u>		
Weather	0.260	0.242	0.238	0.259		
Overall MS	SE improvement	6.9 %	1.1%	7.6 %		

Conclusions on SAMformer (ILBERT et al, ICML oral 2024)

- 1. We studied **pitfalls of transformers** in TS Forecasting
 - Sharp loss landscape = lack of generalization
- 2. Our proposal **SAMformer**:
 - **SAMformer** = RevIN + channel-wise attention + SAM
 - **SOTA** in long-term multivariate time series forecasting
 - **Consistent** = same architecture of different horizons/datasets
 - Lightweight = the smallest SOTA model
 - On par with large foundation model **MOIRAI**
- 3. We believe this finding will inspire further work to enhance our simple architecture.

Thank you.

Check code, paper and slides

