Breaking Boundaries: Balancing Performance and Robustness in Deep Wireless Traffic Forecasting

Romain ILBERT, Thai V. HOANG, Zonghua ZHANG, Themis PALPANAS

Presentation: Romain ILBERT

ARTMAN Workshop

Contents

- Introduction to Adversarial Machine Learning
- 2 Assumptions and objectives of our research
- 8 Risks Minimization
- Our Mechanism
- 6 Experiments

1 Introduction to Adversarial Machine Learning

Introduction to Adversarial Machine Learning

Poisoning Language Models During Instruction Tuning

Alexander Wan*1 Eric Wallace*1 Sheng Shen1 Dan Klein1

Intriguing properties of neural networks

Christian Szegedy W Google Inc. No

Wojciech Zaremba I New York University

a Ilya Sutskever ty Google Inc. Joan Bruna New York University

Dumitru Erhan Google Inc. Ian Goodfellow University of Montreal Rob Fergus New York University Facebook Inc.

Introduction to Adversarial Machine Learning

Figure: Interpretation of an adversarial perturbation in the latent space of a neural Network Φ

Adversarial Machine Learning for Time Series

USA

Towards Robust Multivariate Time-Series Forecasting: Adversarial Attacks and Defense Mechanisms

Poisoning Attacks on Deep Learning based Wireless Traffic Prediction

Tianhang Zheng, Baochun Li University of Toronto, th.zheng@mail.utoronto.ca, bli@ece.toronto.edu

centralized training

Definitions

- Normal Samples : Non-perturbed data from real-world dataset
- **Perturbed Samples :** Normal Samples that has been modified with an attack specifically designed to mislead a model prediction
- Clean Model : Model trained on normal samples only
- Perturbed Model : Model trained on perturbed samples only

Data Model	CLEAN	PERTURBED
CLEAN		×
PERTURBED	×	☑ 🗙

2 Assumptions and objectives of our research

- 3 Risks Minimization
- 4 Our Mechanism

5 Experiments

Assumptions and objectives

• Assumptions on the "Attacker" :

- Full knowledge of the model used for prediction and the training data
- Modifies each step in each subsequence into the training set, up to a 40% perturbation
- Employs a PGD attack to perturb the data

• Objectives of the Defense :

- To maintain the error of the perturbed model on perturbed samples as close as possible as the error of the clean model on clean samples (robustness)
- To maintain the performance of the clean model on clean samples (performance)

Assumptions and objectives of our research

8 Risks Minimization

Our Mechanism

5 Experiments

6 Conclusion

Risks Minimization

Empirical Risk Minimization

$$\hat{\mathcal{R}}_{\mathsf{clean}}(\theta) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(f(X_i; \theta), Y_i)$$
(1)

• ERM Minimizer :

$$f_{\mathsf{clean}} = \underset{\theta \in \Theta_{\mathsf{clean}}}{\arg\min} \hat{\mathcal{R}}_{\mathsf{clean}}(\theta) \tag{2}$$

Adversarial Training

• Adversarial Risk Minimization (ARM) :

$$\hat{\mathcal{R}}_{\mathsf{adv}}(\theta) = \frac{1}{m} \sum_{i=1}^{m} \max_{\delta_i \in \Delta} \mathcal{L}(f(X_i + \delta_i; \theta), Y_i)$$
(3)

• Projected Gradient Descent :

$$\tilde{X}_{i,t} = X_i + \delta_{i,t} \in \mathcal{B}_{\infty}(X_i, \epsilon)$$
(4)

$$\tilde{X}_{i,t+1} \leftarrow \Pi_{\Delta} \left(\tilde{X}_{i,t} + \alpha \cdot \operatorname{sign} \left(\nabla_{\tilde{X}_{i,t}} \mathcal{L}(f(\tilde{X}_{i,t};\theta), Y_i) \right) \right)$$

$$\delta_{i,T} \approx \delta_i^*$$
(6)

• ARM Minimizer :

$$\hat{\mathcal{R}}_{\mathsf{adv}}(\theta, T) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(f(X_i + \delta_{i,T}; \theta), Y_i)$$
(7)

$$f_{\mathsf{adv}} = \underset{\theta \in \Theta_{\mathsf{adv}}}{\operatorname{arg\,min}} \hat{\mathcal{R}}_{\mathsf{adv}}(\theta, T) \tag{8}$$

Madry et al., Towards Deep Learning Models Resistant to Adversarial Attacks, 2019

12/31

Risks Minimization

ERM vs ARM

Figure: On the left : ERM (f_{clean}). In the middle : PGD Attack on normal samples. On the right : ARM (f_{adv})

<ロト < 部ト < 言ト < 言ト こ の Q () 13/31

- 1 Introduction to Adversarial Machine Learning
 - 2 Assumptions and objectives of our research
 - 3 Risks Minimization

Our contribution

- A novel defense mechanism $f_{\rm CD}$ involving : 1 classifier to identify perturbed data, 1 denoiser to remove perturbations from those data and the clean forecaster $f_{\rm clean}$
- A new bi-level masking attack strategy under extreme adversarial conditions
- Our optimal model preserves up to 92.02% of the original forecasting model's MSE on clean data. Its MSE is up to $2.71\times$ and $2.51\times$ lower than $f_{\rm adv}$ on clean and perturbed data, respectively and up to $1.72\times$ lower than $f_{\rm clean}$ on perturbed data.

The effectiveness of our proposed defense mechanism has been validated on real-world telecom dataset.

Baseline Models

Traffic data : transferred to a common server to train a global forecasting model.

- f_{clean} : forecaster trained on normal data using a standard ERM scheme.
- f_{adv} : forecaster trained on perturbed data using an ARM scheme. Serves as baseline comparison.
- $f_{\rm CD}$: forecaster trained on partially perturbed data using our scheme
- $\bullet~f_{\rm clean}$ and $f_{\rm adv}$ have same neural architecture $\Theta_{\rm clean}=\Theta_{\rm adv}$
- $\bullet\,$ The loss function ${\cal L}$ is defined as the MSE.

Perturbed Sequences

- 10-steps PGD Attack to approximate δ^*_i
- Assumption : The attacker can manipulate the value of individual time steps of each sequence from each client.
- We generate partially perturbed sequences by applying various masks to the original sequences.
- Bi-level perturbation : sequences and time-steps.
 - %pseq : proportion of perturbed sequences in the training set
 - k : number of individual time-steps to perturb in each perturbed sequence
- Notation :
 - $\bullet \ \mathbb{N}$: The set of normal data
 - $\bullet \ \mathbb{P}$: The set of perturbed data

Masking Strategy

For a sequence of length n = 3

- The mask q = (0, 0, 1) modifies the last value of X_i and replace the last value of $\hat{X}_{i,T}$.
- \mathbb{Q}_n is the set of different binary masks of length n. $|\mathbb{Q}_n| = 2^n$ for the Classifier and $|\mathbb{Q}_n| = 2^n 1$ for the Denoiser.
- The final batch is $X_i + q \odot \delta_{i,T}$ (Eq. 9)
- $\bullet\,$ We utilize the Hadamard product, denoted by $\odot\,$
- $q \odot A$ corresponds to the element-wise multiplication of each row of A by each element of q, resulting in a matrix of the same shape as A.

$$(\mathbb{1}_n - q) \odot X_i + q \odot \tilde{X}_{i,T} = X_i + q \odot \delta_{i,T}$$
(9)

Our Mechanism

Training Strategies

$$\hat{\mathcal{R}}(\theta) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(f(X_i; \theta), Y_i)$$
(10)

$$\hat{\mathcal{R}}_{\mathsf{adv}}(\theta) = \frac{1}{m} \sum_{i=1}^{m} \max_{\delta_i \in \Delta} \mathcal{L}(f(X_i + \delta_i; \theta), Y_i)$$
(11)

$$\begin{cases} \hat{\mathcal{R}}_{\mathsf{class}}(\theta) = \frac{1}{m} \sum_{i=1}^{m} \mathsf{BCE}(C(X_i; \theta), Y_i) \\ \hat{\mathcal{R}}_{\mathsf{denoise}}(\theta) = \frac{1}{m} \sum_{i=1}^{m} \mathsf{MSE}(\mathsf{D}(X_i + \delta_{i,T}; \theta), X_i) \\ \hat{\mathcal{R}}_{\mathsf{for}}(\theta) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(f(X_i; \theta), Y_i) \end{cases}$$
(12)

19/31

Our forecaster f_{CD}

- Classifier :
 - InceptionTime architecture
 - Trained with 50% normal samples and 50% perturbed samples
- Denoiser :
 - Auto-encoder architecture
 - Trained with 100% perturbed samples
- Clean Forecaster:
 - LSTM-based architecture
 - ERM's minimizer
- The three are trained separately and then assembled for inference

イロト 不得 トイヨト イヨト 三日

20/31

$$f_{\mathsf{CD}}(X_{i,q,T}) = \mathbb{1}(C(X_{i,q,T}) = 1) \cdot f_{\mathsf{clean}} \circ D \circ (X_{i,q,T}C(X_{i,q,T})) \\ + \mathbb{1}(C(X_{i,q,T}) = 0) \cdot f_{\mathsf{clean}} \circ (X_{i,q,T}(1 - C(X_{i,q,T})))$$
(13)
with $X_{i,q,T} = X_i + q \odot \delta_i$

$$f_{\mathsf{CD}}(X_{i,q,T}) = \mathbb{1}(C(X_{i,q,T}) = 1) \cdot f_{\mathsf{clean}} \circ D \circ (X_{i,q,T}C(X_{i,q,T})) \\ + \mathbb{1}(C(X_{i,q,T}) = 0) \cdot f_{\mathsf{clean}} \circ (X_{i,q,T}(1 - C(X_{i,q,T})))$$
(13)
with $X_{i,q,T} = X_i + q \odot \delta_i$

$$f_{\mathsf{CD}}(X_{i,q,T}) = \mathbb{1}(C(X_{i,q,T}) = 1) \cdot f_{\mathsf{clean}} \circ D \circ (X_{i,q,T}C(X_{i,q,T})) \\ + \mathbb{1}(C(X_{i,q,T}) = 0) \cdot f_{\mathsf{clean}} \circ (X_{i,q,T}(1 - C(X_{i,q,T})))$$
(13)
with $X_{i,q,T} = X_i + q \odot \delta_i$

• If
$$\hat{\mathcal{R}}_{\mathsf{C}}(\theta_C) \to 0$$
 : $C(X_{i,q,T}) \to 1$ and $f_{\mathsf{CD}}(X_{i,q,T}) \to f_{\mathsf{clean}} \circ D(X_{i,q,T})$

$$f_{\mathsf{CD}}(X_{i,q,T}) = \mathbb{1}(C(X_{i,q,T}) = 1) \cdot f_{\mathsf{clean}} \circ D \circ (X_{i,q,T}C(X_{i,q,T})) \\ + \mathbb{1}(C(X_{i,q,T}) = 0) \cdot f_{\mathsf{clean}} \circ (X_{i,q,T}(1 - C(X_{i,q,T})))$$
(13)
with $X_{i,q,T} = X_i + q \odot \delta_i$

- If $\hat{\mathcal{R}}_{\mathsf{C}}(\theta_C) \to 0$: $C(X_{i,q,T}) \to 1$ and $f_{\mathsf{CD}}(X_{i,q,T}) \to f_{\mathsf{clean}} \circ D(X_{i,q,T})$
- If $\hat{\mathcal{R}}_{\mathsf{D}}(\theta_D) \to 0$: $D(X_{i,q,T}) \to X_i$ and $f_{\mathsf{CD}}(X_{i,q,T}) \to f_{\mathsf{clean}}(X_i)$

$$f_{\mathsf{CD}}(X_{i,q,T}) = \mathbb{1}(C(X_{i,q,T}) = 1) \cdot f_{\mathsf{clean}} \circ D \circ (X_{i,q,T}C(X_{i,q,T})) \\ + \mathbb{1}(C(X_{i,q,T}) = 0) \cdot f_{\mathsf{clean}} \circ (X_{i,q,T}(1 - C(X_{i,q,T})))$$
(13)
with $X_{i,q,T} = X_i + q \odot \delta_i$

- If $\hat{\mathcal{R}}_{\mathsf{C}}(\theta_C) \to 0$: $C(X_{i,q,T}) \to 1$ and $f_{\mathsf{CD}}(X_{i,q,T}) \to f_{\mathsf{clean}} \circ D(X_{i,q,T})$
- If $\hat{\mathcal{R}}_{\mathsf{D}}(\theta_D) \to 0$: $D(X_{i,q,T}) \to X_i$ and $f_{\mathsf{CD}}(X_{i,q,T}) \to f_{\mathsf{clean}}(X_i)$
- If $X_{i,q,T}$ is not perturbed

$$f_{\mathsf{CD}}(X_{i,q,T}) = \mathbb{1}(C(X_{i,q,T}) = 1) \cdot f_{\mathsf{clean}} \circ D \circ (X_{i,q,T}C(X_{i,q,T})) \\ + \mathbb{1}(C(X_{i,q,T}) = 0) \cdot f_{\mathsf{clean}} \circ (X_{i,q,T}(1 - C(X_{i,q,T})))$$
(13)
with $X_{i,q,T} = X_i + q \odot \delta_i$

- If $\hat{\mathcal{R}}_{\mathsf{C}}(\theta_C) \to 0 : C(X_{i,q,T}) \to 1$ and $f_{\mathsf{CD}}(X_{i,q,T}) \to f_{\mathsf{clean}} \circ D(X_{i,q,T})$ • If $\hat{\mathcal{R}}_{\mathsf{D}}(\theta_D) \to 0 : D(X_{i,q,T}) \to X_i$ and $f_{\mathsf{CD}}(X_{i,q,T}) \to f_{\mathsf{clean}}(X_i)$
- If $X_{i,q,T}$ is not perturbed
 - q = (0, 0, 0) so that $X_{i,q,T} = X_i$
 - If $\hat{\mathcal{R}}_{\mathsf{C}}(\theta_C) \to 0$: $C(X_i) \to 0$ and $f_{\mathsf{CD}}(X_i) \to f_{\mathsf{clean}}(X_i)$

$$f_{\mathsf{CD}}(X_{i,q,T}) = \mathbb{1}(C(X_{i,q,T}) = 1) \cdot f_{\mathsf{clean}} \circ D \circ (X_{i,q,T}C(X_{i,q,T})) \\ + \mathbb{1}(C(X_{i,q,T}) = 0) \cdot f_{\mathsf{clean}} \circ (X_{i,q,T}(1 - C(X_{i,q,T})))$$
(13)
with $X_{i,q,T} = X_i + q \odot \delta_i$

• If $X_{i,q,T}$ is perturbed :

- If $\hat{\mathcal{R}}_{\mathsf{C}}(\theta_C) \to 0$: $C(X_{i,q,T}) \to 1$ and $f_{\mathsf{CD}}(X_{i,q,T}) \to f_{\mathsf{clean}} \circ D(X_{i,q,T})$ • If $\hat{\mathcal{R}}_{\mathsf{D}}(\theta_D) \to 0$: $D(X_{i,q,T}) \to X_i$ and $f_{\mathsf{CD}}(X_{i,q,T}) \to f_{\mathsf{clean}}(X_i)$
- If $X_{i,q,T}$ is not perturbed

•
$$q = (0, 0, 0)$$
 so that $X_{i,q,T} = X_i$
• If $\hat{\mathcal{R}}_{\mathsf{C}}(\theta_C) \to 0$: $C(X_i) \to 0$ and $f_{\mathsf{CD}}(X_i) \to f_{\mathsf{clean}}(X_i)$

Finally,

$$\lim_{\substack{\hat{\mathcal{R}}_{\mathsf{C}} \to 0\\ \hat{\mathcal{R}}_{\mathsf{D}} \to 0\\ X \in \{\mathbb{N}, \mathbb{P}\}}} f_{\mathsf{Clean}}(X) \tag{14}$$

21/31

- 1 Introduction to Adversarial Machine Learning
 - 2 Assumptions and objectives of our research
 - 3 Risks Minimization
 - Our Mechanism

Setup

- Historical data with length n = 3.
- Considers one normal version and 7 possible perturbed versions.
- Trained: Forecasters f_{clean} and f_{adv} , Denoiser D, Classifier C.
- All implemented using PyTorch.
- Varied parameters: k (perturbed steps), %pseq (percentage of perturbed sequences) and triplet of perturbation levels ($\epsilon_c, \epsilon_f, \epsilon_t$)
- Decouple ϵ_c and ϵ_f during training for advantages.

Parameter	Models			
	f_{clean}	$f_{\sf adv}$	C	D
#training epochs	10	15	40	40
Training perturbation (ℓ_∞)	0	ϵ_f	ϵ_c	ϵ_d
Learning rate	0.008	0.008	0.01	0.005
Weight decay	0.2	0.2	0.02	0.1
Gamma	0.5	0.5	0.5	0.5
Scheduler step size	5	5	10	5

Table: Hyperparameters used for components training

Experiments

- Dataset: Telecom Italia dataset for call volumes in Milan. Analyzing hourly data over 8 weeks (7 for training, 1 for testing).
- Historical Data: t 1, t 2, and t 24 hours.
- **Training Approach:** Updates parameters after each epoch, improving stability and computational efficiency. Each model $(f_{clean}, f_{adv}, C, D)$ trained independently with batches of length 512.
- Evaluation Metrics: MSE for Forecasters and Denoiser. Accuracy for Classifier.

Results on clean data

Table: Performance of the four models on the test data without perturbation	$(\epsilon_t =$	0) une	der two training	conditions	(ϵ_c, ϵ)	f).
---	-----------------	--------	------------------	------------	--------------------------	-----

Model	MSE	
	$(\epsilon_c, \epsilon_f) = (0.3, 0.3)$	$(\epsilon_c, \epsilon_f) = (0.2, 0.3)$
f _{clean}	0.0173	0.0173
f_{adv}	0.0509	0.0509
f_{CD}	0.0190	0.0188

Classifier Accuracy on Perturbed Data

- For $k \in \{1,2\}$:
 - Average accuracy for % pseq = 20 : 75.12%
 - Average accuracy for % pseq = 50 : 79.85%
 - Average accuracy for % pseq = 100: 64.13%
- For k = 3 :
 - Average accuracy for % pseq = 20: 59.77%
 - Average accuracy for % pseq = 50: 57.39%
 - Average accuracy for % pseq = 100 : 42.43%

Results

- On clean data :
 - $f_{\rm CD}$'s MSE is multiplied only by a factor 1.09 on clean data
 - f_{adv}'s MSE is multiplied by a factor 2.94 on clean data
- On Perturbed data :
 - f_{clean} performs the best when k = 1 and $\% pseq \le 20$.
 - f_{adv} is robust against large perturbations (k = 3 and % pseq = 100), but its MSE is too large on average, especially for smaller perturbations
 - $f_{\rm CD}$ performs the best on all the other perturbed configurations

Model Data	CLEAN	PERTURBED
CLEAN		×
PERTURBED	×	X
OUR	✓	

- 1 Introduction to Adversarial Machine Learning
 - 2 Assumptions and objectives of our research
 - 3 Risks Minimization
 - Our Mechanism

5 Experiments

- Model f_{CD} : Comprised of 3 components (classifier, denoiser, forecaster). Performance of f_{CD} is up to $2.51 \times$ better than f_{adv} on perturbed data and $2.71 \times$ better on normal data and $1.72 \times$ better than f_{clean} on perturbed data.
- Robustness vs. Accuracy: Performance of $f_{\rm CD}$ on perturbed data would align with $f_{\rm clean}$ on clean data.
- **Comparison:** Significant differences from **zheng_poisoning_2022**. Our *f*_{CD} shows better resilience with 92.02% performance post-defense.
- **Comparative Evaluation:** *f*_{CD}, is efficient in mitigating adversarial attack impacts, safeguarding time series forecasting fidelity.

- 1 Introduction to Adversarial Machine Learning
 - 2 Assumptions and objectives of our research
 - 3 Risks Minimization
 - Our Mechanism
 - 5 Experiments
 - 6 Conclusion

Thank You

Figure: Personal Website

<ロト < 部ト < 言ト < 言ト こ の Q () 31/31