
Breaking Boundaries: Balancing Performance and Robustness in
Deep Wireless Traffic Forecasting

Romain ILBERT, Thai V. HOANG, Zonghua ZHANG, Themis PALPANAS

Presentation: Romain ILBERT

Breaking Boundaries: Balancing Performance and Robustness in Deep Wireless Traffic Forecasting ARTMAN Workshop

Contents

1 Introduction to Adversarial Machine Learning

2 Assumptions and objectives of our research

3 Risks Minimization

4 Our Mechanism

5 Experiments

6 Conclusion

Breaking Boundaries: Balancing Performance and Robustness in Deep Wireless Traffic Forecasting ARTMAN Workshop

Introduction to Adversarial Machine Learning

1 Introduction to Adversarial Machine Learning

2 Assumptions and objectives of our research

3 Risks Minimization

4 Our Mechanism

5 Experiments

6 Conclusion

3 / 31

Introduction to Adversarial Machine Learning

Introduction to Adversarial Machine Learning

4 / 31

Introduction to Adversarial Machine Learning

Introduction to Adversarial Machine Learning

Figure: Interpretation of an adversarial perturbation in the latent space of a neural Network Φ

5 / 31

Introduction to Adversarial Machine Learning

Adversarial Machine Learning for Time Series

6 / 31

Introduction to Adversarial Machine Learning

Definitions

Normal Samples : Non-perturbed data from real-world dataset
Perturbed Samples : Normal Samples that has been modified with an attack
specifically designed to mislead a model prediction
Clean Model : Model trained on normal samples only
Perturbed Model : Model trained on perturbed samples only

7 / 31

Assumptions and objectives of our research

1 Introduction to Adversarial Machine Learning

2 Assumptions and objectives of our research

3 Risks Minimization

4 Our Mechanism

5 Experiments

6 Conclusion

8 / 31

Assumptions and objectives of our research

Assumptions and objectives

Assumptions on the ”Attacker” :
Full knowledge of the model used for prediction and the training data
Modifies each step in each subsequence into the training set, up to a 40%
perturbation
Employs a PGD attack to perturb the data

Objectives of the Defense :
To maintain the error of the perturbed model on perturbed samples as close as
possible as the error of the clean model on clean samples (robustness)
To maintain the performance of the clean model on clean samples
(performance)

9 / 31

Risks Minimization

1 Introduction to Adversarial Machine Learning

2 Assumptions and objectives of our research

3 Risks Minimization

4 Our Mechanism

5 Experiments

6 Conclusion

10 / 31

Risks Minimization

Empirical Risk Minimization

R̂clean(θ) =
1

m

m∑
i=1

L(f(Xi; θ), Yi) (1)

ERM Minimizer :
fclean = arg min

θ∈Θclean

R̂clean(θ) (2)

11 / 31

Risks Minimization

Adversarial Training
Adversarial Risk Minimization (ARM) :

R̂adv(θ) =
1

m

m∑
i=1

max
δi∈∆

L(f(Xi + δi; θ), Yi) (3)

Projected Gradient Descent :

X̃i,t = Xi + δi,t ∈ B∞(Xi, ϵ) (4)

X̃i,t+1 ← Π∆

(
X̃i,t + α · sign

(
∇X̃i,t

L(f(X̃i,t; θ), Yi)
))

(5)

δi,T ≈ δ∗i (6)
ARM Minimizer :

R̂adv(θ, T) =
1

m

m∑
i=1

L(f(Xi + δi,T ; θ), Yi) (7)

fadv = arg min
θ∈Θadv

R̂adv(θ, T) (8)

Madry et al., Towards Deep Learning Models Resistant to Adversarial Attacks, 2019

12 / 31

https://arxiv.org/pdf/1706.06083.pdf

Risks Minimization

ERM vs ARM

Figure: On the left : ERM (fclean). In the middle : PGD Attack on normal samples. On the right : ARM (fadv)

13 / 31

Our Mechanism

1 Introduction to Adversarial Machine Learning

2 Assumptions and objectives of our research

3 Risks Minimization

4 Our Mechanism

5 Experiments

6 Conclusion

14 / 31

Our Mechanism

Our contribution

A novel defense mechanism fCD involving : 1 classifier to identify perturbed
data, 1 denoiser to remove perturbations from those data and the clean
forecaster fclean

A new bi-level masking attack strategy under extreme adversarial conditions
Our optimal model preserves up to 92.02% of the original forecasting model’s
MSE on clean data. Its MSE is up to 2.71× and 2.51× lower than fadv on
clean and perturbed data, respectively and up to 1.72× lower than fclean on
perturbed data.

The effectiveness of our proposed defense mechanism has been validated on
real-world telecom dataset.

15 / 31

Our Mechanism

Baseline Models

Traffic data : transferred to a common server to train a global forecasting model.
fclean : forecaster trained on normal data using a standard ERM scheme.
fadv : forecaster trained on perturbed data using an ARM scheme. Serves as
baseline comparison.
fCD : forecaster trained on partially perturbed data using our scheme
fclean and fadv have same neural architecture Θclean = Θadv

The loss function L is defined as the MSE.

16 / 31

Our Mechanism

Perturbed Sequences

10-steps PGD Attack to approximate δ∗i

Assumption : The attacker can manipulate the value of individual time steps of
each sequence from each client.
We generate partially perturbed sequences by applying various masks to the original
sequences.
Bi-level perturbation : sequences and time-steps.

%pseq : proportion of perturbed sequences in the training set
k : number of individual time-steps to perturb in each perturbed sequence

Notation :
N : The set of normal data
P : The set of perturbed data

17 / 31

Our Mechanism

Masking Strategy

For a sequence of length n = 3

The mask q = (0, 0, 1) modifies the last value of Xi and replace the last value of
X̃i,T .
Qn is the set of different binary masks of length n. |Qn| = 2n for the Classifier and
|Qn| = 2n − 1 for the Denoiser.
The final batch is Xi + q ⊙ δi,T (Eq. 9)
We utilize the Hadamard product, denoted by ⊙
q ⊙A corresponds to the element-wise multiplication of each row of A by each
element of q, resulting in a matrix of the same shape as A.

(1n − q)⊙Xi + q ⊙ X̃i,T = Xi + q ⊙ δi,T (9)

18 / 31

Our Mechanism

Training Strategies

R̂(θ) = 1

m

m∑
i=1

L(f(Xi; θ), Yi) (10)

R̂adv(θ) =
1

m

m∑
i=1

max
δi∈∆

L(f(Xi + δi; θ), Yi) (11)



R̂class(θ) =
1

m

m∑
i=1

BCE(C(Xi; θ), Yi)

R̂denoise(θ) =
1

m

m∑
i=1

MSE(D(Xi + δi,T ; θ), Xi)

R̂for(θ) =
1

m

m∑
i=1

L(f(Xi; θ), Yi)

(12)

19 / 31

Our Mechanism

Our forecaster fCD

Classifier :
InceptionTime architecture
Trained with 50% normal samples
and 50% perturbed samples

Denoiser :
Auto-encoder architecture
Trained with 100% perturbed
samples

Clean Forecaster:
LSTM-based architecture
ERM’s minimizer

The three are trained separately
and then assembled for inference

Figure: Our proposed model fCD

20 / 31

Our Mechanism

Why using a Classifier and a Denoiser ?

fCD(Xi,q,T) = 1(C(Xi,q,T) = 1) · fclean ◦D ◦ (Xi,q,TC(Xi,q,T))

+ 1(C(Xi,q,T) = 0) · fclean ◦ (Xi,q,T (1− C(Xi,q,T))) (13)
with Xi,q,T = Xi + q ⊙ δi

If Xi,q,T is perturbed :
If R̂C(θC) → 0 : C(Xi,q,T) → 1 and fCD(Xi,q,T) → fclean ◦D(Xi,q,T)
If R̂D(θD) → 0 : D(Xi,q,T) → Xi and fCD(Xi,q,T) → fclean(Xi)

If Xi,q,T is not perturbed
q = (0, 0, 0) so that Xi,q,T = Xi

If R̂C(θC) → 0 : C(Xi) → 0 and fCD(Xi) → fclean(Xi)

Finally,
lim

R̂C→0

R̂D→0
X∈{N,P}

fCD(X) = lim
X∈N

fclean(X) (14)

21 / 31

Our Mechanism

Why using a Classifier and a Denoiser ?

fCD(Xi,q,T) = 1(C(Xi,q,T) = 1) · fclean ◦D ◦ (Xi,q,TC(Xi,q,T))

+ 1(C(Xi,q,T) = 0) · fclean ◦ (Xi,q,T (1− C(Xi,q,T))) (13)
with Xi,q,T = Xi + q ⊙ δi

If Xi,q,T is perturbed :

If R̂C(θC) → 0 : C(Xi,q,T) → 1 and fCD(Xi,q,T) → fclean ◦D(Xi,q,T)
If R̂D(θD) → 0 : D(Xi,q,T) → Xi and fCD(Xi,q,T) → fclean(Xi)

If Xi,q,T is not perturbed
q = (0, 0, 0) so that Xi,q,T = Xi

If R̂C(θC) → 0 : C(Xi) → 0 and fCD(Xi) → fclean(Xi)

Finally,
lim

R̂C→0

R̂D→0
X∈{N,P}

fCD(X) = lim
X∈N

fclean(X) (14)

21 / 31

Our Mechanism

Why using a Classifier and a Denoiser ?

fCD(Xi,q,T) = 1(C(Xi,q,T) = 1) · fclean ◦D ◦ (Xi,q,TC(Xi,q,T))

+ 1(C(Xi,q,T) = 0) · fclean ◦ (Xi,q,T (1− C(Xi,q,T))) (13)
with Xi,q,T = Xi + q ⊙ δi

If Xi,q,T is perturbed :
If R̂C(θC) → 0 : C(Xi,q,T) → 1 and fCD(Xi,q,T) → fclean ◦D(Xi,q,T)

If R̂D(θD) → 0 : D(Xi,q,T) → Xi and fCD(Xi,q,T) → fclean(Xi)

If Xi,q,T is not perturbed
q = (0, 0, 0) so that Xi,q,T = Xi

If R̂C(θC) → 0 : C(Xi) → 0 and fCD(Xi) → fclean(Xi)

Finally,
lim

R̂C→0

R̂D→0
X∈{N,P}

fCD(X) = lim
X∈N

fclean(X) (14)

21 / 31

Our Mechanism

Why using a Classifier and a Denoiser ?

fCD(Xi,q,T) = 1(C(Xi,q,T) = 1) · fclean ◦D ◦ (Xi,q,TC(Xi,q,T))

+ 1(C(Xi,q,T) = 0) · fclean ◦ (Xi,q,T (1− C(Xi,q,T))) (13)
with Xi,q,T = Xi + q ⊙ δi

If Xi,q,T is perturbed :
If R̂C(θC) → 0 : C(Xi,q,T) → 1 and fCD(Xi,q,T) → fclean ◦D(Xi,q,T)
If R̂D(θD) → 0 : D(Xi,q,T) → Xi and fCD(Xi,q,T) → fclean(Xi)

If Xi,q,T is not perturbed
q = (0, 0, 0) so that Xi,q,T = Xi

If R̂C(θC) → 0 : C(Xi) → 0 and fCD(Xi) → fclean(Xi)

Finally,
lim

R̂C→0

R̂D→0
X∈{N,P}

fCD(X) = lim
X∈N

fclean(X) (14)

21 / 31

Our Mechanism

Why using a Classifier and a Denoiser ?

fCD(Xi,q,T) = 1(C(Xi,q,T) = 1) · fclean ◦D ◦ (Xi,q,TC(Xi,q,T))

+ 1(C(Xi,q,T) = 0) · fclean ◦ (Xi,q,T (1− C(Xi,q,T))) (13)
with Xi,q,T = Xi + q ⊙ δi

If Xi,q,T is perturbed :
If R̂C(θC) → 0 : C(Xi,q,T) → 1 and fCD(Xi,q,T) → fclean ◦D(Xi,q,T)
If R̂D(θD) → 0 : D(Xi,q,T) → Xi and fCD(Xi,q,T) → fclean(Xi)

If Xi,q,T is not perturbed

q = (0, 0, 0) so that Xi,q,T = Xi

If R̂C(θC) → 0 : C(Xi) → 0 and fCD(Xi) → fclean(Xi)

Finally,
lim

R̂C→0

R̂D→0
X∈{N,P}

fCD(X) = lim
X∈N

fclean(X) (14)

21 / 31

Our Mechanism

Why using a Classifier and a Denoiser ?

fCD(Xi,q,T) = 1(C(Xi,q,T) = 1) · fclean ◦D ◦ (Xi,q,TC(Xi,q,T))

+ 1(C(Xi,q,T) = 0) · fclean ◦ (Xi,q,T (1− C(Xi,q,T))) (13)
with Xi,q,T = Xi + q ⊙ δi

If Xi,q,T is perturbed :
If R̂C(θC) → 0 : C(Xi,q,T) → 1 and fCD(Xi,q,T) → fclean ◦D(Xi,q,T)
If R̂D(θD) → 0 : D(Xi,q,T) → Xi and fCD(Xi,q,T) → fclean(Xi)

If Xi,q,T is not perturbed
q = (0, 0, 0) so that Xi,q,T = Xi

If R̂C(θC) → 0 : C(Xi) → 0 and fCD(Xi) → fclean(Xi)

Finally,
lim

R̂C→0

R̂D→0
X∈{N,P}

fCD(X) = lim
X∈N

fclean(X) (14)

21 / 31

Our Mechanism

Why using a Classifier and a Denoiser ?

fCD(Xi,q,T) = 1(C(Xi,q,T) = 1) · fclean ◦D ◦ (Xi,q,TC(Xi,q,T))

+ 1(C(Xi,q,T) = 0) · fclean ◦ (Xi,q,T (1− C(Xi,q,T))) (13)
with Xi,q,T = Xi + q ⊙ δi

If Xi,q,T is perturbed :
If R̂C(θC) → 0 : C(Xi,q,T) → 1 and fCD(Xi,q,T) → fclean ◦D(Xi,q,T)
If R̂D(θD) → 0 : D(Xi,q,T) → Xi and fCD(Xi,q,T) → fclean(Xi)

If Xi,q,T is not perturbed
q = (0, 0, 0) so that Xi,q,T = Xi

If R̂C(θC) → 0 : C(Xi) → 0 and fCD(Xi) → fclean(Xi)

Finally,
lim

R̂C→0

R̂D→0
X∈{N,P}

fCD(X) = lim
X∈N

fclean(X) (14)

21 / 31

Experiments

1 Introduction to Adversarial Machine Learning

2 Assumptions and objectives of our research

3 Risks Minimization

4 Our Mechanism

5 Experiments

6 Conclusion

22 / 31

Experiments

Setup
Historical data with length n = 3.
Considers one normal version and 7 possible perturbed versions.
Trained: Forecasters fclean and fadv, Denoiser D, Classifier C.
All implemented using PyTorch.
Varied parameters: k (perturbed steps), %pseq (percentage of perturbed
sequences) and triplet of perturbation levels (ϵc, ϵf , ϵt)

Decouple ϵc and ϵf during training for advantages.

Table: Hyperparameters used for components training

Parameter Models
fclean fadv C D

#training epochs 10 15 40 40
Training perturbation (ℓ∞) 0 ϵf ϵc ϵd
Learning rate 0.008 0.008 0.01 0.005
Weight decay 0.2 0.2 0.02 0.1
Gamma 0.5 0.5 0.5 0.5
Scheduler step size 5 5 10 5

23 / 31

Experiments

Experiments

Dataset: Telecom Italia dataset for call volumes in Milan. Analyzing hourly data
over 8 weeks (7 for training, 1 for testing).
Historical Data: t− 1, t− 2, and t− 24 hours.
Training Approach: Updates parameters after each epoch, improving stability and
computational efficiency. Each model (fclean, fadv, C, D) trained independently
with batches of length 512.
Evaluation Metrics: MSE for Forecasters and Denoiser. Accuracy for Classifier.

24 / 31

Experiments

Results on clean data

Table: Performance of the four models on the test data without perturbation (ϵt = 0) under two training conditions (ϵc, ϵf).

Model MSE
(ϵc, ϵf) = (0.3, 0.3) (ϵc, ϵf) = (0.2, 0.3)

fclean 0.0173 0.0173
fadv 0.0509 0.0509
fCD 0.0190 0.0188

25 / 31

Experiments

Classifier Accuracy on Perturbed Data

For k ∈ {1, 2} :
Average accuracy for %pseq = 20 : 75.12%
Average accuracy for %pseq = 50 : 79.85%
Average accuracy for %pseq = 100 : 64.13%

For k = 3 :
Average accuracy for %pseq = 20 : 59.77%
Average accuracy for %pseq = 50 : 57.39%
Average accuracy for %pseq = 100 : 42.43%

26 / 31

Experiments

Results

On clean data :
fCD’s MSE is multiplied only by a factor 1.09 on clean data
fadv’s MSE is multiplied by a factor 2.94 on clean data

On Perturbed data :
fclean performs the best when k = 1 and %pseq ≤ 20.
fadv is robust against large perturbations (k = 3 and %pseq = 100), but its
MSE is too large on average, especially for smaller perturbations
fCD performs the best on all the other perturbed configurations

27 / 31

Conclusion

1 Introduction to Adversarial Machine Learning

2 Assumptions and objectives of our research

3 Risks Minimization

4 Our Mechanism

5 Experiments

6 Conclusion

28 / 31

Conclusion

Conclusion

Model fCD: Comprised of 3 components (classifier, denoiser, forecaster).
Performance of fCD is up to 2.51× better than fadv on perturbed data and 2.71×
better on normal data and 1.72× better than fclean on perturbed data.
Robustness vs. Accuracy: Performance of fCD on perturbed data would align with
fclean on clean data.
Comparison: Significant differences from zheng_poisoning_2022. Our fCD
shows better resilience with 92.02% performance post-defense.
Comparative Evaluation: fCD, is efficient in mitigating adversarial attack impacts,
safeguarding time series forecasting fidelity.

29 / 31

Acknowledgement

1 Introduction to Adversarial Machine Learning

2 Assumptions and objectives of our research

3 Risks Minimization

4 Our Mechanism

5 Experiments

6 Conclusion

30 / 31

Acknowledgement

Thank You

Figure: Personal Website

31 / 31

	Introduction to Adversarial Machine Learning
	Assumptions and objectives of our research
	Risks Minimization
	Our Mechanism
	Experiments
	Conclusion
	Acknowledgement

