SAMformer : Unlocking the potential of Transformers in Time-Series Forecasting

Presentation : Romain ILBERT*

Check my website for code and paper :

Accepted as an Oral at ICML 2024

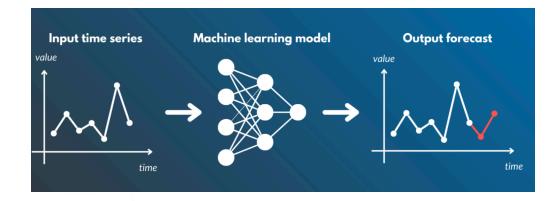
* PhD Student at LIPADE, Paris Descartes University & Huawei Paris Research Center

1

Time Series Forecasting : A Definition

Problem Setup

1. Given past observations, predict future ones

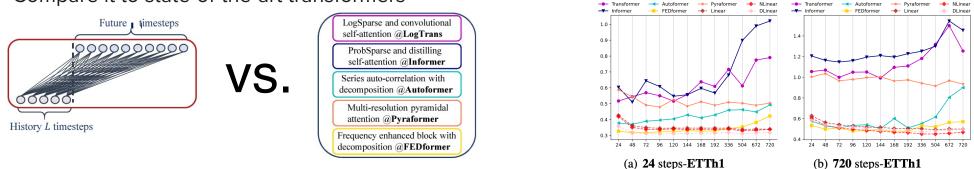


- 2. Univariate (single channel) vs. multivariate (multi-channels)
- 3. Short, medium and <u>long-term horizon</u>

Failure of Transformers

Motivation:

- Consider the simplest linear model for forecasting 1.
- 2. Compare it to state-of-the-art transformers



---- Autoformer

NLinear

--- Transformer

This Linear model surpasses the SOTA FEDformer (ICML'22) in most cases by 20%~50%

Main conclusions from Zeng et al.

- Transformer-based methods don't work well in forecasting
- 2. Embarrassing failure in most basic scenario

... yet they dominate NLP and vision. Why?

1. Are Transformers Effective for Time Series Forecasting? Zeng et al. 2023. 3

SAMformer (Ilbert et al. , ICML Oral 2024)

A transformer-based TS forecaster that actually works

Context :

- Consider a simple linear regression problem
- Transformer defined as $f(\mathbf{X}) = [\mathbf{X} + A(\mathbf{X})\mathbf{X}\mathbf{W}_{V}\mathbf{W}_{O}]\mathbf{W}$

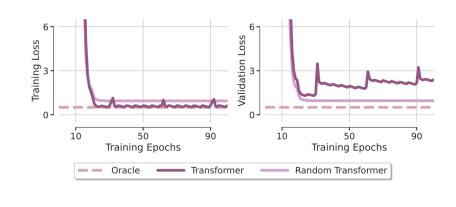
with channel-wise attention (DxD matrix, rather than LxL)

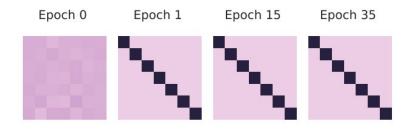
Conclusions :

- 1. Linear Transformer severely overfits
- 2. And works better if we freeze the attention
- 3. Because the attention get stuck at the identity matrix and does not move afterwards

Pathological behavior suggesting sharp local minima

$$\mathbf{Y} = \mathbf{X}\mathbf{W}_{\mathsf{toy}} + \epsilon$$
 (L=512, H=96, D=7)

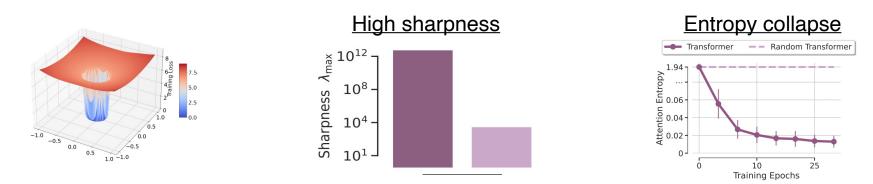




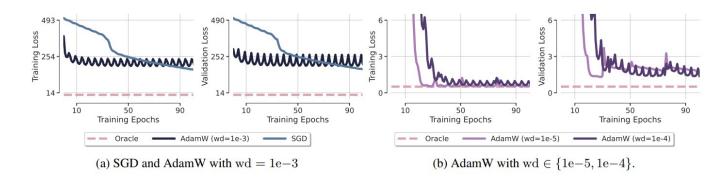
Simple Toy Regression Example

Why transformers fail?

1. Transformers have a <u>sharp loss landscape</u> and suffer from <u>entropy collapse</u>



- 2. Well-known in NLP and vision (Chen et al., 2022, Zhai et al. 2023), ignored in TS Forecasting
- 3. And no changing in the optimizer helps to solve this



Simple Toy Regression Example : To fix the sharpness issue

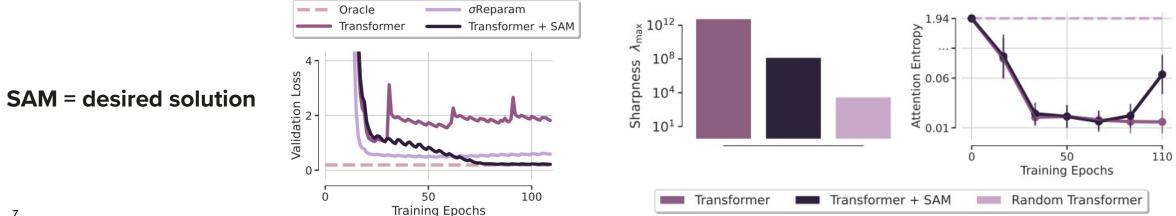
1. σ – **Reparametrization** (Zhen et al. 2023)

- Make attention matrix more uniform to avoid entropy collapse

$$\hat{\mathbf{W}} = \frac{\gamma}{\|\mathbf{W}\|_2} \mathbf{W}$$

- 2. Sharpness - Aware Minimization (Foret et al. 2021, Chen et al. 2022)
 - Converge toward weights that lie in neighborhoods having uniformly low loss

$$\mathscr{L}_{\text{train}}^{\text{SAM}}(\omega) = \max_{\|\epsilon\| < \rho} \mathscr{L}_{\text{train}}(\omega + \epsilon)$$



Congrats you now know how to solve

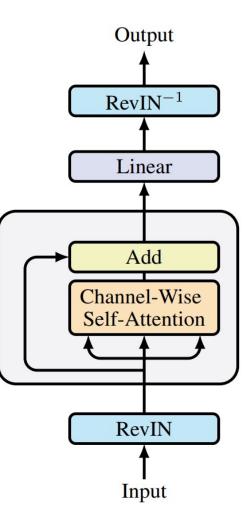
a linear regression problem with transformers!

SAMformer Architecture (ILBERT et al, ICML oral 2024)

Let's put it all together now:

- 1. Shallow transformer with a **channel-wise attention**
- 2. RevIN layer to be robust to train/test time shift
- 3. We optimize it with **SAM**

SAMformer = 15 lines of code



1. <u>Datasets</u>

Dataset	ETTh1/ETTh2	ETTm1/ETTm2	Electricity	Exchange	Traffic	Weather
# features	7	7	321	8	862	21
# time steps	17420	69680	26304	7588	17544	52696
Granularity	1 hour	15 minutes	1 hour	1 day	1 hour	10 minutes

2. <u>Baselines</u>

- <u>TSmixer</u>: MLPmixer model from Google (SOTA in 2023)

- <u>Transformers</u>: iTransformer (ICLR'24), PatchTST (ICLR'23), FEDformer (ICML'22), Pyraformer (ICLR'22), Informer (AAAI'21), Autoformer (NeurIPS'21), LogTrans (NeurIPS'19)

3. Nbr of parameters

- SAMFormer is smaller and more consistent than TSMixer. The same model for all datasets/horizons
- Avg Ratio = nbre params TSMixer / nbre params SAMFormer

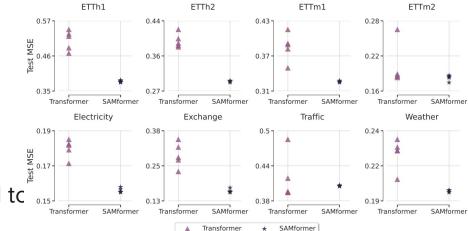
Dataset	H =	96	H = 1	192	H = 3	336	H = 720		Total
Dunior	SAMformer	TSMixer	SAMformer	TSMixer	SAMformer	TSMixer	SAMformer	TSMixer	2000
ETT	50272	124142	99520	173390	173392	247262	369904	444254	-
Exchange	50272	349344	99520	398592	173392	472464	369904	669456	-
Weather	50272	121908	99520	171156	173392	245028	369904	442020	-
Electricity	50272	280676	99520	329924	173392	403796	369904	600788	_
Traffic	50272	793424	99520	842672	173392	916544	369904	1113536	-
Avg. Ratio	Ratio 6.64		3.85		2.64	4	1.7	3.73	

Experimental results (ILBERT et al, ICML oral 2024)

with S.	AM	without SAM							
SAMformer	TSMixer	Transformer	TSMixer	In*	Auto*	FED*	Pyra [†]	LogTrans†	
Overall MSE improvement	$\mathbf{5.25\%}$	16.96%	$\mathbf{14.33\%}$	72.20 %	$\mathbf{22.65\%}$	$\mathbf{12.36\%}$	61 .88%	70.88%	

- 1. SAMformer is **14% better** than TSMixer, **11.13% better** than PatchTST, **3.94%** better than iTransformer
 - much better than all transformer-based models
- 2. <u>Sharpness-aware minimization</u> **improves** TSMixer as well
- 3. SAMformer is robust to random initialization
 - Very low variance for different random seeds compared tc

Transformer

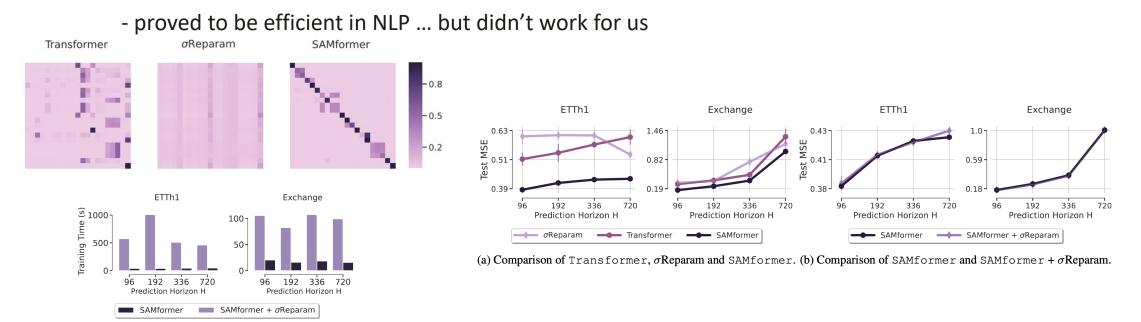


SAMFormer is on par with MOIRAI foundation model

- MORAI (Salesforce + Singapore University)
- trained on LOTSA with <u>27B samples</u> from <u>9 domains</u>
- comes in 3 sizes: small (14M), base (91M) and Large (311M)

		MOIRAI _{Small}	MOIRAIBase	MOIRAILarge	SAMformer
ETTh1	MSE MAE	0.400 0.424	$\frac{0.434}{0.438}$	0.510 0.469	0.41
ETTh2	MSE MAE	0.341 0.379	$\frac{0.345}{0.382}$	0.354 0.376	0.344
ETTm1	MSE MAE	0.448 0.409	0.381 0.388	0.390 <u>0.389</u>	0.373
ETTm2	MSE MAE	0.300 0.341	0.272 <u>0.321</u>	<u>0.276</u> 0.320	0.2685
Electricity	MSE MAE	0.233 0.320	0.188 0.274	$\frac{0.188}{0.273}$	0.181
Weather	MSE MAE	$\frac{0.242}{0.267}$	0.238 0.261	0.259 0.275	0.26

Comparison with σ – **Reparametrization**



Observations:

- Transformers ignores diagonal elements
- SAMformer strongly encourages feature self-correlation (as in ViTs)
- Weight reparametrization oversmoothes the attention matrix

SAM vs σ – Reparametrization

<u>Oversmoothing = rank collapse</u>

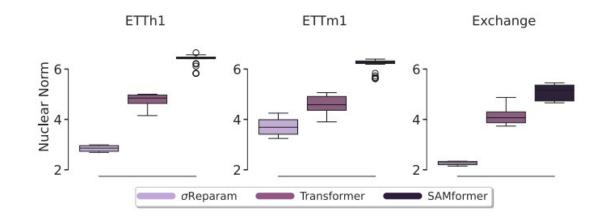
- we prove that

Proposition 2.2 (Upper bound on the nuclear norm) Let $\mathbf{X} \in \mathbb{R}^{D \times L}$ be an input sequence. Assuming $\mathbf{W}_Q \mathbf{W}_K^\top = \mathbf{W}_K \mathbf{W}_Q^\top \succeq \mathbf{0}$, we have $\|\mathbf{X} \mathbf{W}_Q \mathbf{W}_K^\top \mathbf{X}^\top\|_* \leq \|\mathbf{W}_Q \mathbf{W}_K^\top\|_2 \|\mathbf{X}\|_F^2$.

Minimized by reparametrization

Roughly = **rank** of the **attention matrix** '

- maximizing the entropy of the attention = rank collapse
- rank collapse = uninformative channel-wise attention



Ablation study on channel-wise attention and identity weight matrix attention ?

- Candidate 1: SAMformer with temporal attention (as used in all other transformers)
- Candidate 2: SAMformer with identity weight matrix attention
- Overall Improvement : Improvement of SAMFormer over both candidates

Model	Metrics	Н	ETTh1	ETTh2	ETTm1	ETTm2	Electricity	Exchange	Traffic	Weather	Overall Improvement
Attention	MSE	192 336	$\begin{array}{c} 0.496 _{\pm 0.009} \\ 0.510 _{\pm 0.014} \\ 0.549 _{\pm 0.017} \\ 0.604 _{\pm 0.017} \end{array}$	$0.414_{\pm 0.020}$	$\begin{array}{c} 0.615 _{\pm 0.056} \\ 0.620 _{\pm 0.046} \end{array}$	$\begin{array}{c} 0.394 _{\pm 0.033} \\ 0.436 _{\pm 0.081} \end{array}$	$\begin{array}{c} 0.294 _{\pm 0.024} \\ 0.290 _{\pm 0.016} \end{array}$	$\begin{array}{c} 0.434_{\pm 0.063} \\ 0.473_{\pm 0.014} \end{array}$	$\begin{array}{c} 0.647_{\pm 0.131} \\ 0.656_{\pm 0.113} \end{array}$	$0.254_{\pm 0.001}$	12.97%
Temporal	MAE	192 336	$\begin{array}{c} 0.492 _{\pm 0.010} \\ 0.517 _{\pm 0.012} \end{array}$	$\begin{array}{c} 0.434_{\pm 0.006} \\ 0.443_{\pm 0.015} \\ 0.440_{\pm 0.012} \\ 0.442_{\pm 0.006} \end{array}$	$\begin{array}{c} 0.566_{\pm 0.032} \\ 0.550_{\pm 0.024} \end{array}$	${0.421}_{\pm 0.019}\\ {0.443}_{\pm 0.039}$	$\begin{array}{c} 0.385_{\pm 0.014} \\ 0.383_{\pm 0.009} \end{array}$	$\begin{array}{c} 0.498_{\pm 0.033} \\ 0.517_{\pm 0.008} \end{array}$	$0.467_{\pm 0.072}$	$0.294_{\pm 0.001}$	18.09%

Model	Metrics	Н	ETTh1	ETTh2	ETTm1	ETTm2	Electricity	Exchange	Traffic	Weather	Overall Improvement
Attention	MSE	192 336	$\begin{array}{c} 0.467 _{\pm 0.074} \\ 0.512 _{\pm 0.070} \end{array}$	$\begin{array}{c} 0.346_{\pm 0.055} \\ 0.374_{\pm 0.031} \\ 0.372_{\pm 0.024} \\ 0.405_{\pm 0.012} \end{array}$	$\begin{array}{c} 0.384_{\pm 0.042} \\ 0.408_{\pm 0.032} \end{array}$	$\begin{array}{c} 0.248_{\pm 0.016} \\ 0.303_{\pm 0.022} \end{array}$	$\begin{array}{c} 0.189_{\pm 0.022} \\ 0.211_{\pm 0.019} \end{array}$	$\begin{array}{c} 0.320 _{\pm 0.070} \\ 0.443 _{\pm 0.071} \end{array}$	$\begin{array}{c} 0.437 _{\pm 0.041} \\ 0.500 _{\pm 0.155} \end{array}$	$0.277_{\pm 0.003}$	91%
Identity	MAE	192 336	$\begin{array}{c} 0.463_{\pm 0.055} \\ 0.490_{\pm 0.049} \end{array}$	$\begin{array}{c} 0.395 _{\pm 0.033} \\ 0.413 _{\pm 0.022} \\ 0.413 _{\pm 0.015} \\ 0.438 _{\pm 0.008} \end{array}$	$\begin{array}{c} 0.399 _{\pm 0.030} \\ 0.411 _{\pm 0.019} \end{array}$	$\begin{array}{c} 0.321_{\pm 0.012} \\ 0.354_{\pm 0.018} \end{array}$	$\begin{array}{c} 0.291 _{\pm 0.029} \\ 0.309 _{\pm 0.021} \end{array}$	$\begin{array}{c} 0.418_{\pm 0.043} \\ 0.498_{\pm 0.041} \end{array}$	$\begin{array}{c} 0.314_{\pm 0.042} \\ 0.350_{\pm 0.106} \end{array}$	$\begin{array}{c} 0.278_{\pm 0.002} \\ 0.305_{\pm 0.003} \end{array}$	4.18%

Conclusions on SAMformer (ILBERT et al, ICML oral 2024)

- 1. We studied **pitfalls of transformers** in time series forecasting
 - Sharp loss landscape = lack of generalization
- 2. Our proposal SAMformer
 - **SAMformer** = RevIN + channel-wise attention + SAM optimization
 - SOTA in long-term multivariate time series forecasting
 - **Consistent** = same architecture of different horizons/datasets
 - Lightweight = the smallest SOTA model
 - On par with large foundation model MORAI

Thank you.