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Abstract:

This thesis introduces a unified frame-
work for multivariate time series anal-
ysis by intertwining three complemen-
tary contributions. First, we present
SAMformer—a novel, shallow trans-
former architecture tailored for time
series forecasting. Unlike in natural
language processing or computer vi-
sion, standard transformer models of-
ten underperform in forecasting tasks
due to their tendency to converge to
sharp minima during training, which
impairs generalization. By integrating
sharpness-aware minimization with a
new channel-wise attention mechanism,
SAMformer overcomes these pitfalls and
achieves state-of-the-art performance.
Second, in the context of multivariate
forecasting, we observe that most exist-
ing methods predict each channel inde-
pendently, thereby neglecting valuable

inter-channel correlations. To address
this, we develop a multi-task learning
approach that incorporates a specialized
regularization term into the training
loss. This term is applied to a final layer
that fuses independent channel outputs
into a coherent multivariate prediction,
effectively exploiting the shared dynam-
ics among channels. Third, we tackle
limitations in foundation models, which
typically process time series in a univari-
ate manner for tasks such as multivari-
ate classification. We propose the design
of intelligent adapters that combine in-
formation across channels, dramatically
reducing computational time and mem-
ory usagewhile preserving predictive ac-
curacy. Collectively, these contributions
provide a coherent strategy for learn-
ing robust representations of multivari-
ate time series.



Title : Apprentissage de représentations pour les séries temporelles multi-

variées.

Mots-clés : séries temporelles multivariées, apprentissage des représentations,
prévision de séries temporelles, classification de séries temporelles, optimisation,
régularisation, apprentissagemultitâche, transformers, modèles fondamentaux, af-
finage

Résumé :

Cette thèse présente un cadre unifié
pour l’analyse des séries temporelles
multivariées en articulant trois contri-
butions complémentaires. Tout d’abord,
nous introduisons SAMformer — une
nouvelle architecture de transformer
peu profonde spécialement conçue pour
la prévision des séries temporelles. Con-
trairement aux applications en traite-
ment du langage naturel ou en vi-
sion par ordinateur, les modèles trans-
former classiques obtiennent souvent
des performances insuffisantes en prévi-
sion, en raison de leur tendance à
converger vers des minima aigus lors
de l’entraînement, ce qui nuit à leur
capacité de généralisation. En inté-
grant une stratégie d’optimisation sen-
sible à la netteté (sharpness-aware mini-
mization) avec un nouveau mécanisme
d’attention par canal, SAMformer con-
tourne ces écueils et atteint des per-
formances de pointe. Ensuite, dans
le contexte de la prévision multivar-
iée, nous avons constaté que la plu-
part des méthodes existantes effectuent
des prédictions univariées pour chaque
canal, négligeant ainsi les corrélations

spatio-temporelles essentielles entre les
canaux. Pour y remédier, nous dévelop-
pons une approche d’apprentissagemul-
titâche qui intègre un terme de régu-
larisation spécifique dans la fonction de
coût d’entraînement. Ce terme est ap-
pliqué à une couche finale qui fusionne
les sorties issues de canaux indépen-
dants en une prédiction multivariée co-
hérente, exploitant efficacement les dy-
namiques communes. Enfin, nous abor-
dons les limitations des modèles de fon-
dation, lesquels traitent généralement
les séries temporelles demanière univar-
iée pour des tâches telles que la classi-
fication. Nous proposons la conception
d’adaptateurs intelligents permettant de
combiner de façon optimale l’informa-
tion provenant de différents canaux, ré-
duisant drastiquement le temps de cal-
cul et les besoins en mémoire tout en
préservant la précision prédictive dans
des tâches de classification multivar-
iée. Collectivement, ces contributions
offrent une stratégie cohérente pour
apprendre des représentations robustes
des séries temporelles multivariées.



Résumé général de la thèse

Contexte et Motivations

Les séries temporelles multivariées jouent un rôle crucial dans de nombreux domaines tels
que la maintenance prédictive, la santé, la finance, l’énergie ou encore l’analyse clima-
tique. Dans le contexte industriel, ces données permettent notamment la détection précoce
de pannes, réduisant ainsi les coûts opérationnels et améliorant la sécurité des systèmes.
En santé, elles sont essentielles au suivi en continu de l’état des patients, en particulier
dans les unités de soins intensifs où une intervention rapide peut sauver des vies. Dans le
secteur financier, l’analyse précise des séries temporelles est indispensable pour la gestion
des risques et la prise de décisions d’investissement stratégiques. Enfin, pour l’analyse cli-
matique, elles sont fondamentales à l’étude des tendances à long terme, contribuant à la
compréhension et à la prédiction du changement climatique.

Toutefois, l’exploitation efficace de ces séries temporelles se heurte à plusieurs diffi-
cultés importantes. Premièrement, ces données présentent souvent des interactions com-
plexes, ponctuelles et dynamiques entre leurs différentes variables, rendant leur analyse
particulièrement difficile. De plus, elles sont fréquemment affectées par du bruit impor-
tant, une forte non-stationnarité liée à des changements dans les processus sous-jacents,
ainsi que par des données manquantes dues à des capteurs défectueux ou des interruptions
de transmission.

Un autre défi majeur concerne la rareté des données labellisées disponibles pour en-
traîner desmodèles prédictifs efficaces. Cette situation est particulièrement fréquente dans
des domaines sensibles comme la médecine, où les questions de confidentialité limitent
l’accès à de larges ensembles de données annotées. Par ailleurs, dans des contextes cri-
tiques tels que la santé ou la finance, il est impératif de disposer de prédictions en temps
réel avec une très faible latence, tout en assurant une grande transparence et interprétabil-
ité des modèles utilisés afin de garantir la confiance des utilisateurs finaux et la conformité
aux régulations en vigueur.

Ainsi, bien que les récentes avancées en apprentissage automatique, et particulière-
ment dans les réseaux neuronaux profonds comme les transformers, aient révolutionné
des domaines tels que le traitement du langage naturel et la vision par ordinateur, leur
succès n’est pas encore pleinement transposé aux séries temporelles multivariées. Cela
souligne un besoin critique de développer des modèles spécialisés capables de prendre en
compte explicitement la structure complexe des interactions entre variables tout en restant
robustes aux défis inhérents à ce type de données.

Lacunes des Approches Actuelles

Bien que les dernières années aient vu émerger des avancées notables dans la modélisa-
tion des séries temporelles, plusieurs limites importantes subsistent dans les approches
actuelles :

Haute Dimensionnalité. Les séries temporelles multivariées modernes impliquent sou-
vent un très grand nombre de variables, notamment dans l’industrie avec l’Internet des ob-
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jets (IoT), la finance ou encore la surveillance médicale, où des dizaines voire des centaines
de capteurs ou d’indicateurs doivent être traités simultanément. Les approches tradition-
nelles telles que les variantes d’ARIMA ou les réseaux neuronaux récurrents simples sont
généralement incapables de gérer efficacement cette dimensionnalité élevée, entraînant
soit une simplification excessive du modèle, soit un surapprentissage rapide. Même les
modèles avancés comme les transformers peinent parfois à surpasser des modèles linéaires
simples dans ces conditions, soulignant la nécessité de méthodes spécifiquement adaptées
à la haute dimensionnalité.

Passage à l’échelle. Bien que lesmodèles de fondation aient démontré des performances
remarquables en NLP et en vision par ordinateur, leur application directe aux séries tem-
porelles multivariées se heurte souvent à des contraintes computationnelles sévères. Ces
modèles nécessitent typiquement d’importantes ressources en mémoire et en temps de
calcul, les rendant difficilement exploitables en temps réel sur des systèmes aux ressources
limitées. Par ailleurs, ces modèles sont souvent conçus pour fonctionner sur des données
massives, alors que les séries temporelles réelles disponibles dans les domaines sensibles
sont fréquemment limitées en taille, nécessitant ainsi des approches de réduction dimen-
sionnelle efficaces et adaptées.

Fondements Théoriques etOptimisation. Malgré leur puissance expressive, les trans-
formers et autres architectures complexes rencontrent des difficultés à généraliser efficace-
ment aux séries temporelles réelles en raison de problèmes liés aux paysages d’optimisa-
tion complexes et à la difficulté d’atteindre des minima généralisables. Ce phénomène est
d’autant plus marqué dans des scénarios où les données sont limitées ou bruitées. De plus,
l’absence d’un cadre théorique rigoureux permettant de comprendre clairement l’impact
des caractéristiques des données (dimensionnalité, bruit, non-stationnarité) sur la perfor-
mance des modèles limite l’amélioration systématique des méthodologies existantes.

Architectures Efficaces. Les architectures actuelles pour les séries temporelles souf-
frent souvent d’une complexité excessive qui empêche leur déploiement en temps réel dans
des contextes sensibles où les décisions doivent être immédiates, comme en finance ou en
santé. Cette complexité implique souvent des compromis difficiles entre précision prédic-
tive, efficacité computationnelle et interprétabilité. La conception d’architectures légères,
modulaires et adaptables, capables de préserver l’essentiel de la performance tout en étant
suffisamment rapides et interprétables, demeure donc un enjeu majeur non résolu par les
approches existantes.

Ces lacunes motivent pleinement les contributions de cette thèse, qui vise à apporter
des solutions concrètes, robustes et innovantes, combinant une compréhension théorique
approfondie avec des approches pratiques efficaces pour mieux répondre aux besoins réels
de l’analyse des séries temporelles multivariées.

Contributions Principales

Face à ces défis, cette thèse apporte trois contributions majeures :
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SAMformer : une variante robuste du Transformer. Dans le chapitre 3, nous ex-
plorons pourquoi les transformers, malgré leur puissance expressive démontrée en NLP et
en vision par ordinateur, échouent souvent à surpasser des modèles linéaires plus simples
en prévision multivariée à long terme. À partir d’un problème linéaire élémentaire, nous
montrons que les transformers souffrent d’une mauvaise généralisation liée à la structure
de leursmécanismes d’attention, qui les conduit à desminima locaux trop pointus. Nous in-
troduisons alors SAMformer, un Transformer léger utilisant la minimisation consciente de
la netteté (SAM) et une attention spécifique par canal. Cette combinaison permet au mod-
èle de mieux gérer l’instabilité lors de l’entraînement, favorisant la convergence vers des
minima plats avec une généralisation améliorée. SAMformer intègre également des pra-
tiques récentes telles que la normalisation réversible d’instance (RevIN), optimisant ainsi
les performances en prévision à long terme sur plusieurs jeux de données réels couramment
utilisés. Nos résultats expérimentaux montrent que SAMformer atteint l’état de l’art, ainsi
que des performances équivalentes au modèle de fondation MOIRAI tout en ayant consid-
érablement moins de paramètres.

Cadre de régularisationmulti-tâches pour sériesmultivariées. Le chapitre 4 aborde
la prévision des séries temporellesmultivariées sous l’angle de l’apprentissagemulti-tâches.
Nous considérons chaque canal d’une série multivariée comme une tâche distincte, per-
mettant ainsi une meilleure exploitation des informations partagées entre canaux. Nous
proposons une stratégie d’optimisation innovante qui introduit une régularisation explicite
encourageant l’apprentissage conjoint entre tâches tout en préservant des spécificités in-
dividuelles importantes. Nous fournissons également un cadre analytique détaillé per-
mettant de comprendre comment équilibrer efficacement les composantes communes et
spécifiques des séries temporelles. Ce cadre théorique est accompagné d’une méthode
pratique fondée sur les statistiques des données, facilitant ainsi la sélection optimale des
hyperparamètres. Nos évaluations empiriquesmontrent une nette amélioration des perfor-
mances prédictives par rapport aux approchesmono-tâches traditionnelles et une compéti-
tivité marquée vis-à-vis des modèles multivariés avancés tels que SAMformer ou iTrans-
former.

Adaptation efficace des modèles de fondation aux séries temporelles. Le chapitre
5 traite du défi de rendre accessibles les modèles de fondation très performants mais gour-
mands en ressources dans le contexte des séries temporelles multivariées. Nous proposons
une stratégie originale de compression de l’espace latent, réduisant ainsi drastiquement
les exigences en mémoire et en temps de calcul tout en maintenant un niveau élevé de
précision de classification. À travers des expériences approfondies, nous démontrons que
notre approche permet de réduire l’espace latent à seulement 2,10% de sa taille initiale
tout en préservant 96,15% des performances originales du modèle complet. De plus, nous
explorons divers adaptateurs basés sur des méthodes classiques et des réseaux neuronaux
afin d’optimiser davantage cette représentation compressée. Nos résultats soulignent un
gain de vitesse jusqu’à dix fois supérieur par rapport aux modèles de référence, et permet-
tent d’accueillir un nombre beaucoup plus important de jeux de données sur un seul GPU
standard, rendant ainsi ces modèles de fondation pratiques pour un usage généralisé.
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Ces contributions constituent un avancement majeur en modélisation des séries tem-
porelles, répondant efficacement aux défis pratiques et théoriques du domaine.

Aperçu de la Thèse

Nous détaillons ci-après le contenu de cette thèse:
Le chapitre 1 constitue une introduction générale présentant le problème traité, ex-

posant le contexte scientifique et industriel, et identifiant les motivations, les défis et
les lacunes existantes dans les approches actuelles. Il précise également les objectifs de
recherche et donne un aperçu des contributions majeures apportées par cette thèse.

Le chapitre 2 présente une revue de l’état de l’art relatif aux séries temporelles multi-
variées, en se concentrant sur trois domaines fondamentaux : la classification, la prévision
et les modèles de fondation. Ce chapitre établit également le lien entre ces domaines et
les objectifs spécifiques de la thèse, et pose les bases nécessaires à la compréhension des
contributions proposées dans les chapitres suivants.

Le chapitre 3 présente en détail SAMformer, une variante légère et efficace des trans-
formers, spécifiquement conçue pour pallier les limites constatées dans les séries tem-
porelles. Nous y analysons les raisons pour lesquelles les transformers classiques échouent
souvent en prévision à long terme, puis détaillons comment notremodèle intègre laminimi-
sation consciente de la netteté (SAM) avec une attention spécifique par canal. Ce chapitre
inclut une exploration approfondie de l’impact de ces choix méthodologiques sur la sta-
bilité de l’entraînement et la performance en généralisation, validée par des expériences
rigoureuses sur de nombreux jeux de données réels.

Le chapitre 4 introduit et développe un cadre innovant de régularisation multi-tâches
appliqué à la prévision des séries temporelles multivariées. Nous formulons théoriquement
le problème de prévision multivariée comme une collection de tâches interconnectées, en
mettant en avant une régularisation capable d’exploiter les similitudes inter-canaux tout
en respectant leurs particularités individuelles. Ce chapitre détaille les aspects théoriques
et pratiques, notamment la sélection guidée par les statistiques des données pour les hy-
perparamètres, et démontre par des résultats expérimentaux solides l’efficacité accrue de
cette approche comparée aux méthodes traditionnelles.

Le chapitre 5 traite du défi majeur de rendre les modèles de fondation accessibles et
pratiques pour l’analyse de séries temporelles multivariées, grâce à une stratégie avancée
de compression de l’espace latent. Nous étudions diverses techniques de réduction dimen-
sionnelle permettant de préserver une grande partie de la performance originale tout en
diminuant significativement les coûts computationnels et mémoires. Le chapitre explore
en détail les performances obtenues en classification multivariée avec différentes méth-
odes d’adaptation, montrant un gain substantiel en rapidité d’entraînement et en capacité
à gérer efficacement davantage de données sur un même matériel.

Le chapitre 6 conclut cette thèse en résumant les contributions clés et en proposant
une réflexion sur les perspectives ouvertes par ce travail. Il présente des pistes pour les
recherches futures, telles que l’extension anisotropique de SAM ou une factorisation ma-
tricielle pour de la prévision multi-échelle. Ce chapitre souligne l’importance de poursuivre
des travaux interdisciplinaires pour répondre aux défis complexes posés par les séries tem-
porelles multivariées.
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«J’avais appris que la patience était une vertu suprême, la plus élégante et la
plus oubliée. Elle aidait à aimer le monde avant de prétendre le transformer.
Elle invitait à s’asseoir devant la scène, à jouir du spectacle, fût-il un frémisse-
ment de feuille. La patience était la révérence de l’homme à ce qui était donné.»

Sylvain Tesson, La panthère des neiges.
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Chapter 1

General Introduction

1.1 What this thesis tries to address

1.1.1 Motivation

Time series data arise in a wide range of fields—including predictive maintenance, health-
care, finance, and climate modeling—where analysts aim to uncover actionable patterns.
These patternsmay involve detecting faults early in industrial systems, monitoring patients
in a hospital, guiding decisions in financial markets, or analyzing climate trends over long
time spans. Despite the natural fit of time series for tracking changes over time, these data
often involve many variables, contain substantial noise, and exhibit intricate dependen-
cies across different channels. Consequently, many machine learning algorithms struggle
to effectively leverage the rich structure of multivariate time series, especially when only
limited data are available.

Challenges in modeling multivariate time series are plentiful. First, capturing the com-
plex interactions among multiple variables is inherently difficult. These interactions can be
sporadic—some variables may correlate only in specific time windows and remain uncor-
related otherwise—and they can be linear or non-linear in nature. Physical constraints add
yet another layer of complexity. For instance, one sensor might influence another with a
delay, making it hard to detect the underlying dependencies. All these factors complicate
our ability to model and interpret these interactions.

Second, many real-world time series are both non-stationary and noisy, meaning the
underlying data-generating processes can shift over time, while sensor failures and miss-
ing data can create outliers and gaps. As an example, energy consumption data typically
exhibit non-stationary patterns due to seasonal variations and user behavior, and these
data may also contain measurement errors.

Another difficulty arises from the frequent scarcity of labeled data, whether because of
privacy regulations (e.g., in the medical domain) or simply because critical events are rare.
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Brain signals like EEG (electroencephalography) recordings, for instance, are often under-
supervised due to the high cost and time required for expert annotation, as well as ethical
issues surrounding data sharing. Such scarcity of labels can hamper the training and val-
idation of accurate models. Meanwhile, high-stakes sectors such as finance or healthcare
increasingly demand interpretability, to build experts’ trust and meet regulatory require-
ments, as well as low-latency predictions to enable real-time decisions or interventions. In
healthcare, for example, clinicians in intensive care units rely on immediate predictions of
patient deterioration and must understand why a model raises an alert.

Although powerful architectures such as transformers (Vaswani et al., 2017) dominate
large-scale language and computer vision tasks, these approaches do not always perform as
well in time series. In some cases, they can even be outperformed by simpler linear models.
Moreover, these architectures often assume independence among variables, contradicting
the fundamental idea behind multivariate time series, where leveraging inter-variable re-
lationships is key. By neglecting these dependencies, such models cannot fully capture the
richness of multivariate time series data.

Despite major advancements in machine learning, particularly in deep networks and
sequence-based architectures, most current methods still do not sufficiently address the
combination of high dimensionality, noise, non-stationarity, sparse labeling, interpretabil-
ity, and low-latency constraints characteristic of real-world multivariate time series.

Against this backdrop, this thesis is driven by the need to develop robust, efficient,
scalable methods and intuitive insights for modeling multivariate time series. We draw on
recent advances in multitask learning to share relevant information across multiple tasks
or channels, thereby boosting generalization. We also look to insights from transformer-
based approaches—particularly regarding how they capture long-range dependencies—and
adapt them for time series by carefully controlling complexity and mitigating overfitting.
In addition, we explore how large-scale foundation models may be leveraged in time series,
provided we introduce efficient adapters that keep computations tractable. Altogether, the
goal of this thesis is to bridge the gap between theoretical insights and practical solutions,
yielding approaches that handle real-world constraints—limited data, noisy signals and
interpretability needs—while delivering state-of-the-art performance.

1.1.2 Research Gaps

Although significant progress has been made in time series modeling, several gaps persist
in current methodologies, preventing their widespread adoption and reliable performance
in real-world multivariate scenarios:

1. HighDimensionality. Modern time series applications often involve tracking dozens,
if not hundreds, of variables in tandem, whether in industrial IoT (e.g., temperature, pres-
sure, flow rates) or in healthcare and finance (e.g., multiple physiological signals, market
indicators). Traditional models, such as ARIMA variants (G. E. Box & G. M. Jenkins, 1970)
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or basic recurrent networks (Hochreiter & Schmidhuber, 1997a), become overwhelmed by
this fast-rising dimensionality, leading to overfitting, excessive computation, or simplistic
assumptions that treat each channel as independent. Meanwhile, even more advanced
transformer-based architectures (H. Zhou et al., 2021; H. Wu et al., 2021) can sometimes
be outperformed by naïve predictors in certain tasks (Guan Lai et al., 2018), underscoring
persistent methodological gaps in time series forecasting. Combining multiple channels
can enhance accuracy by leveraging interactions between channels. For instance, when
pressure changes lag behind temperature changes, or when multiple financial indicators
collectively hint at market shifts. Multi-task or multi-channel approaches (Caruana, 1997)
can help unify these signals, yet they remain underexplored or heuristically applied. We
assume that a more principled integration of inter-variable information, one that balances
model complexity and interpretability, could substantially improve forecasting, classifica-
tion, and more generally multivariate time series representations across diverse domains.

2. Scalability. Large-scale foundation models have transformed natural language pro-
cessing and computer vision, and they are increasingly being applied to time series tasks
(Ansari et al., 2024; Goswami et al., 2024; G. Woo et al., 2024a; Jin et al., 2024; T. Zhou,
PeiSong Niu, et al., 2023; Das et al., 2024). However, directly using them for multivariate
time series poses unique challenges. Real-world time series often offer limited labeled data,
and their signals can be irregular, noisy, or prone to missing values, unlike the large, more
curated datasets common in language and vision. Moreover, foundation models demand
significant computational resources, creating bottlenecks in scenarios requiring near-real-
time predictions, such as high-frequency financial trading or industrial anomaly detection.
Similarly, many forecasting architectures have become disproportionately large, some-
times reaching hundreds of millions of parameters for relatively modest datasets (Gam-
boa, 2017; Oreshkin et al., 2020; H. Zhou et al., 2021; H. Wu et al., 2021; T. Zhou, Ma, et al.,
2022; J. Nie et al., 2023; W. Woo et al., 2022; Y. Zhang et al., 2021). These models often
employ heavy regularization to avoid overfitting, exposing the need for a more fundamen-
tal rethinking of model design to enhance data efficiency and resource usage (Gamboa,
2017; Oreshkin et al., 2020). A fundamental rethinking of scalability is therefore required,
not just to accommodate increasing model sizes, but to develop more efficient approaches
that enhance both performance and interpretability.

3. Theoretical Foundations and Optimization. While deep networks have seen suc-
cess in other fields, time series often expose hidden limitations in their optimization and
generalization capabilities. Transformers, for instance, are universal sequence approxima-
tors in theory (Yun et al., 2019), yet they frequently underperform simple linear baselines
when confronted with real-world time series—raising the question of how to realize their
theoretical promise (Guan Lai et al., 2018). Part of the challenge lies in suboptimal opti-
mization landscapes, where regularization methods or specific weight initializations may
fail to guide these complex architectures toward global minima that capture subtle spatio-
temporal relationships (Bengio et al., 1994; Glorot & Bengio, 2010a) and generalize well.
Another challenge is the lack of rigorous analytical frameworks that can shed light on
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how factors like the number of samples, the dimensionality, or the noise levels may affect
model behavior. Such theoretical insights are essential for developing more architectures
that lead to greater robustness and interpretability.

4. Efficient Architectures. Although transformers have revolutionized sequence mod-
eling through parallel self-attention, applying them directly to time series reveals multiple
bottlenecks (H. Zhou et al., 2021). First, they can be data-hungry and prone to overfitting
when facedwith smaller or noisier datasets than those found inNLP or vision. Second, they
often impose heavy computational andmemory demands, which undermines real-time de-
ployment in fields like finance, healthcare, or industrial control. Simply shrinking these ar-
chitectures can strip away their ability to capture fine-grained spatio-temporal dependen-
cies (Q.Wen et al., 2023). Amore promising direction lies in designing selective, lightweight
attention mechanisms, incorporating specific regularization methods, and building inter-
pretable modules that highlight relevant features without incurring prohibitive overhead.
In doing so, one can balance the expressive power of self-attention with the constraints of
computational resources, data availability, and generalization.

In sum, these gaps underscore the need for substantial innovation in multivariate time se-
ries. There is a pressing requirement to better exploit cross-channel information, to improve
the scalability and efficiency of existing architectures, and to overhaul current optimization
practices so as to understand why powerful models like transformers—so successful in NLP
and computer vision—can underperform linear baselines in multivariate forecasting tasks.
A deeper understanding of these empirical and theoretical insights also enables more in-
terpretable solutions, which prove essential in sensitive fields like healthcare, where trust
and transparency are indispensable. Building on these insights, the subsequent chapters
of this thesis introduce novel architectures and robust theory while leveragingmultivariate
information to learn better representations.

Connecting the Gaps to our Proposed Contributions. In order to address the short-
comings discussed in the preceding sections, this thesis puts forward three key contribu-
tions that combine theory and applicability.

Given the growing evidence that transformer-based architectures can sometimes un-
derperform even naive baselines on real-world time series, we propose SAMformer. This
lightweight yet robust transformer variant integrates sharpness-aware minimization (SAM)
and channel-focused attention to alleviate overfitting and converge toward flat optima,
which are known to enhance generalization. Unlike large-scale transformers that require
massive datasets or resort to aggressive regularization, SAMformer emphasizes a stable
training and optimization strategy to locate flat local minima that generalize effectively,
even under domain shift. Empirical evaluations onmultivariate forecasting tasks show that
SAMformer achieves state-of-the-art performance while remaining the most lightweight
model, making it an efficient, robust and scalable solution, especially when compared to
foundation models such as MOIRAI (G. Woo et al., 2024a).

To better exploit cross-channel dependencies in high-dimensional time series, this the-
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sis introduces a multi-task regularization framework. Many existing forecasting models
assume that multivariate time series channels are independent, leading them to treat each
channel separately. Our approach challenges this assumption by incorporating a regular-
ized loss function that explicitly captures interdependencies across channels. We evaluate
this framework on both linear and non-linear models, including transformer-based archi-
tectures. The regularization strength is controlled by a parameter λ, which we derive an-
alytically. Our theoretical insights obtained from linear models extend well to non-linear
architectures. The experiments reveal that even simple linear models trained with our reg-
ularized loss achieve performance comparable to state-of-the-art multivariate forecasting
models on commonly used multivariate time series forecasting benchmarks. Our frame-
work enhances robustness, improves interpretability, and effectively exploits multivariate
dependencies.

While foundation models have demonstrated strong generalization capabilities in nat-
ural language processing and computer vision, their application to multivariate time series
remains constrained by computational inefficiency and scalability challenges. This thesis in-
troduces a novel approach to adapting foundation models efficiently for multivariate time
series, leveraging latent space compression techniques to enhance computational feasibil-
ity while preserving performance. By structuring the adaptation process around resource
constraints, we enable the deployment of powerful pre-trained models on real-world time
series tasks, making them more accessible and practical for large-scale applications.

Taken together, these contributions provide a cohesive strategy for advancing time se-
ries analysis, balancing theoretical rigor, computational efficiency, and practical applica-
bility in data- and resource-constrained environments.

1.2 Overview of the thesis

This thesis focuses on advancing the state of the art in multivariate time series analysis,
with a particular emphasis on learning robust and scalable representations. By addressing
critical challenges such as high dimensionality, complex dependencies, and data efficiency,
it aims to contribute to both the theoretical understanding and practical application of time
series modeling. Below, we provide an overview of the core objectives and contributions of
this work.

Chapter 3: SAMformer: Unlocking the Potential of Transformers

in Time Series Forecasting with Sharpness-Aware Minimization and

Channel-Wise Attention

Despite the success of transformers in natural language processing and computer vi-
sion, transformer-based architectures often fall short inmultivariate long-term forecasting,
sometimes performing no better than simple linear models (Zeng, M. Chen, et al., 2023).
In Chapter 3, we present SAMformer—a lightweight, robust transformer variant specifi-
cally designed to overcome these shortcomings. Our approach combines Sharpness-Aware
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Minimization (SAM), a well-established method to drive optimization toward flat minima,
with a novel channel-wise attention mechanism. This mechanism is designed to mitigate
issues such as sharp loss landscape, which has been shown to impair the training stabil-
ity of transformers (X. Chen et al., 2022; Zhai et al., 2023). By focusing on per-channel
interactions rather than temporal attention, SAMformer reduces the parameter count and
computational cost while significantly improving generalization. Empirical evaluations
demonstrate that SAMformer not only converges more stably but also outperforms linear,
mixer-based, transformer-based models and larger foundation models such as MOIRAI (G.
Woo et al., 2024a), all while being markedly faster and more scalable.

Chapter 4: On Multi-Task Learning in Multivariate Time Series

Forecasting

In high-dimensional forecasting problems, capturing the interdependencies amongmul-
tiple time series channels is crucial. However, many existing approaches treat each channel
in isolation, which can lead to overfitting and poor utilization of the shared structure inher-
ent in the data. In Chapter 4, we propose a multi-task regularization framework that inte-
grates an additional regularization term into the learning objective. This term is specifically
designed to extract and exploit multivariate information by enforcing shared representa-
tions across channels. Our method can be easily integrated into existing neural network
architectures. In practice, even linear models augmented with our regularization term are
shown to outperform standard baselines—illustrating that our technique effectively lever-
ages cross-channel information to enhance predictive performance.

Chapter 5: On Adapting Foundation Models to Multivariate Time

Series Classification

While large foundation models have revolutionized fields like NLP and computer vi-
sion, their direct application to multivariate time series classification is often hindered
by high computational demands and scalability issues. In Chapter 5, we propose a novel
adapter framework that compresses the time-space representation through advanced la-
tent space compression techniques. This adaptation makes it feasible to deploy large pre-
trained foundation models in resource-constrained environments without sacrificing clas-
sification accuracy. Our approach is demonstrated usingMantis andMOMENT (Feofanov,
S.Wen, et al., 2024; Goswami et al., 2024). The adaptedmodel offers significantmultivariate
fine-tuning speedups while being on par with its full and non-adapted counterpart. This
work thus bridges the gap between powerful pre-trained models and practical, large-scale
applications in multivariate time series classification.

Together, these contributions address key limitations in existing approaches and lay the
groundwork for future research in multivariate time series analysis. The following chap-
ters provide a detailed exploration of each contribution, highlighting both the theoretical
underpinnings and practical implementations.
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1.3 Publications included in the thesis

This thesis is centered around key publications that have contributed to the field of mul-
tivariate time series analysis. These publications are presented in the main body of the
thesis, as they represent the core contributions of this research:

Chapter 3

• Ilbert, R., Odonnat, A., Feofanov, V., Virmaux, A., Paolo, G., Palpanas, T., Redko,
I. 2024. Unlocking the Potential of Transformers in Time Series Forecasting with
Sharpness-Aware Minimization and Channel-Wise Attention. International Confer-
ence on Machine Learning (ICML 2024) [Oral].

Chapter 4

• Ilbert, R., Feofanov, V., Tiomoko, M., Palpanas, T., Redko, I. 2024. Enhancing Multi-
variate Time Series Forecasting via Multi-Task Learning and RandomMatrix Theory.
Time Series in the Age of Large Models (NeurIPS Workshop).

• Ilbert, R., Feofanov, V., Tiomoko,M., Odonnat, A., Palpanas, T., Redko, I. 2024. Analysing
Multi-Task Regression via Random Matrix Theory with Application to Time Series
Forecasting. Advances in Neural Information Processing Systems (NeurIPS 2024) [Spot-
Light].

Chapter 5

• Ilbert, R., Feofanov, V., Tiomoko, M., Palpanas, T., Redko, I. 2025. User-friendly Foun-
dationModel Adapters for Multivariate Time Series Classification. Multivariate Time
Series Analytics Workshop (International Conference on Data Engineering Workshop).

1.4 Publications not included in the thesis

While the following publications are relevant to this research, they are not included in the
main body of the thesis.

• Ilbert, R., V. Hoang, T., Zhang, Z., Palpanas, T. 2023. Breaking Boundaries: Balancing
Performance and Robustness in Deep Wireless Traffic Forecasting. ARTMAN (ACM
CCS Workshop).

• Ilbert, R., V. Hoang, T., Zhang, Z. 2024. Data Augmentation for Multivariate Time Se-
ries Classification: An Experimental Study. Multivariate Time Series Analytics Work-
shop (International Conference on Data Engineering Workshop).
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Chapter 1

• Feofanov, V., Wen, S., Alonso, M., Ilbert, R., Guo, H., Tiomoko, M., Pan, L., Zhang,
J., Redko, I. 2025. MANTIS: Foundation Model with Adapters for Multichannel Time
Series Classification. Technical Report.
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Chapter 2

Background and Related Work

Understanding how to effectively model multivariate time series is central to this thesis,
particularly through the lens of representation learning, the task of discovering informa-
tive features from raw time series data. To set the stage for the contributions described in
later chapters, we first review three key areas of existing literature: time series classifica-
tion, forecasting, and foundation models. These areas are highly relevant as they represent
common tasks in real-world applications, each providing different challenges and oppor-
tunities for representation learning. While classification focuses on assigning categorical
labels to entire sequences, forecasting aims at predicting future values based on past ob-
servations, and foundation models explore generalizable large-scale representations. This
chapter reviews foundational methods and recent advances in these three areas.

2.1 Definition and importance of time series

2.1.1 What is a time series?

A time series is a sequence of data points collected or recorded at successive time intervals,
capturing how one or more variables evolve over time. Formally, we define a multivariate
time series of length T as

{xt}Tt=1, where xt ∈ RD.
Each vector xt consists of D channels (or features), with xt =

(
xt,1, . . . , xt,D

)
. In matrix

form, the entire series can be written as X ∈ RT×D, where the (t, d)-th entry, Xt,d , cor-
responds to the value of the d-th channel at time t . An example of such a time series
is depicted in Figure 2.1. Univariate time series naturally arise as the special case where
D = 1.

Time series data are characterized by several key features:

• Temporal dependency: Observations are generally not independent; the value at
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Figure 2.1: Example of a D-dimensional multivariate time-series with D=3.

a given time often depends on past observations.

• Trend and seasonality: Many time series exhibit long-term growth or decline pat-
terns (trends), as well as periodic behaviors (seasonality).

• Irregularities: Time series data frequently contain noise, missing values, or abrupt
shifts, making them more challenging to model than static datasets.

• Channel interdependence (multivariate only): In the multivariate setting (D >

1), different channels may have complex, time-varying, and potentially nonlinear
relationships with one another. Identifying and leveraging these interdependencies
is essential for improving performance but adds further complexity to the modeling
design.

These characteristics make time series unique and necessitate specialized methods to
capture their underlying temporal structure and cross-channel dependencies effectively.

2.1.2 Temporal Dependency

Temporal dependency refers to the intrinsic relationship between observations in a time se-
ries across different time steps. Unlike independent and identically distributed (i.i.d.) data,
time series observations are sequentially ordered: the value at time t often depends on past
values (lagged dependency) and can also influence future values (causal dependency).

Probabilistic Viewpoint. From a probabilistic perspective, a time series {xt}Tt=1 can
be viewed as a realization of an underlying stochastic process. For i.i.d. data, the joint
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probability distribution factorizes as

P(x1, x2, . . . , xT ) =
T∏
t=1

P(xt),

reflecting the absence of temporal or cross-sample dependencies. In contrast, time series
data generally obey

P(x1, x2, . . . , xT ) =
T∏
t=1

P
(
xt
∣∣ xt−1, xt−2, . . . , x1).

Hence, each observation xt is potentially correlated with its past. In many practical scenar-
ios, a simplified assumption known as theMarkov property (or finite-orderMarkov property)
is made, whereby

xt | xt−1, xt−2, . . . , x1 ≈ xt | xt−1, . . . , xt−p,

meaning only the last p observations have a significant direct influence on the current
value. This motivates the notion of a model order p, which encapsulates how far back in
time the process {xt} looks when generating the next observation.

Parametric Model. Formally, one may view a time series {xt}Tt=1 as being generated by
an underlying process

xt = fθ
(
xt−1, xt−2, . . . , xt−p

)
+ εt , (2.1)

where fθ is a potentially nonlinear function parameterized by θ, p denotes the order of
temporal dependence, and εt is an error term, often assumed to be white noise with zero
mean and finite variance. In a classical autoregressive (AR) model, fθ takes a linear form,

p∑
i=1

φi xt−i ,

where θ = (φ1, φ2, . . . , φp), with each φi ∈ R, corresponds to the set of AR coefficients
(G. E. Box & G. M. Jenkins, 1970; Hamilton, 1994).

Short- vs. Long-Term Dependencies. Depending on the nature of the data, the rel-
evant temporal dependency may manifest over short or long horizons (Brockwell & R. A.
Davis, 2009). For instance, a one-step-ahead forecast in financial markets might rely on
only a few recent observations, whereas physiological signals (e.g., electroencephalograms)
may exhibit longer-term rhythms and periodicities (e.g., circadian cycles).

Look-BackWindow. In modern forecasting practice—particularly in deep learning ap-
proaches—practitioners often prefer to specify the number of past time steps to consider,
rather than a direct measure of temporal length. The parameter L, called the look-back
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window, thus plays a role analogous to the order p discussed above, and is typically mea-
sured in discrete time steps. In state-of-the-art neural forecasting models, it is common to
set L = 336 or L = 512 (H. Zhou et al., 2021; H. Wu et al., 2021), enabling the model to
capture extended historical context. This approach is more flexible when the underlying
data have varying sampling rates or when one wishes to experiment with different window
lengths without redefining a notion of calendar time (e.g., daily vs. hourly). By tuning L,
one can calibrate the trade-off between capturing long-range dependencies and managing
computational complexity.

Challenges and Opportunities. A key challenge lies in identifying which past obser-
vations are relevant and how they influence future predictions. The dependency may be
time-varying, nonlinear, and subject to regime shifts, trends, or seasonality. Moreover, in
multivariate settings, cross-channel relationships add another layer of complexity (Tsay,
2013).

2.1.3 Trend and Seasonality

Trend and seasonality are structural components frequently observed in time series data.

• Trend: A trend represents the long-term increase or decrease in the values of a time
series. It may result from external factors such as population growth, economic poli-
cies, or gradual technological advancements. Identifying trends helps to understand
the overall direction of change over time.

• Seasonality: Seasonality refers to recurring patterns or cycles at regular intervals,
such as daily, weekly, or yearly variations. For instance, energy consumption tends
to follow seasonal patterns due to temperature changes, and retail sales often peak
during holidays.

Both trend and seasonality can obscure the underlying dynamics of a time series, mak-
ing their removal or modeling essential for accurate prediction or classification (Cleveland
et al., 1990). Techniques such as decomposition are commonly employed to isolate these
components. An example of such a decomposition is illustrated in Figure 2.2, where a time
series is separated into its original signal, trend, and seasonal component.

Beyond these patterns, external factors—known as external covariates—can provide
valuable additional information for forecasting. These covariates include variables that
are known in advance, such as holidays, promotional events, or economic indicators, that
can enhance predictive accuracy.
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Figure 2.2: Breakdown of a channel into its fundamental components: original signal (top),
underlying trend (middle), and seasonal variations (bottom)

2.1.4 Irregularities

Irregularities in time series encompass noise, missing values, and abrupt changes or anoma-
lies that deviate significantly from the expected behavior (Little & Rubin, 2002; Chandola
et al., 2009; Boniol et al., 2024). These can arise from various sources:

• Noise: Random fluctuations that do not contain meaningful information, often re-
sulting from measurement errors or external disturbances.

• Missing values: Gaps in the recorded data due to hardware failures, transmission
errors, or data corruption.

• Anomalies: Unexpected spikes, drops, or structural breaks, often indicative of crit-
ical events, such as equipment failures in industrial systems or financial crashes in
stock markets. While anomalies can introduce noise into forecasting models, they
can also serve as distinctive signatures of a time series, making them useful features
for classification tasks. For instance, the occurrence of specific anomaly patterns in
physiological signals can aid in the diagnosis of medical conditions.

Handling irregularities is essential for effective analysis. Noise can obscure meaningful
patterns, while anomalies may lead to biased models if not accounted for properly. Robust
preprocessing techniques, such as smoothing (Friedman, 1984), imputation (Little & Rubin,
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Figure 2.3: Illustration of irregularities. The plot highlights missing values (gaps) and
anomalies (red circles), all of which can affectmodel performance if not properly addressed.
However, anomalies may also serve as informative features for classification tasks.

2002), and outlier detection (Chandola et al., 2009), are commonly used to mitigate these
effects. However, in some cases, anomalies carry valuable information that can be lever-
aged for classification problems. For instance, specific patterns of anomalies can serve as
distinguishing features in shapelet-based classification methods (Ye & Keogh, 2009; Hills
et al., 2014). Identifying recurrent irregularities across different time series can help dis-
tinguish between different categories or states, enhancing the robustness of classification
models. An example of these irregularities—missing values and anomalies—can be seen in
Figure 2.3.

2.1.5 Channel Interdependence in Multivariate Time Series

In multivariate time series, different channels (or features) often exhibit complex depen-
dencies that evolve over time. Unlike univariate series, where each observation depends
solely on its own past values, multivariate series involve interactions between multiple
variables that can be linear or nonlinear, static or dynamic.

Defining Channel Interdependence. Unlike in the univariate case, where each value
depends only on its own past, multivariate time series introduce interactions between dif-
ferent channels. This means that the value xt,d at time t is not only influenced by its
own history but also by the past values of other channels. A simple way to represent this
dependency is:

xt,d = fd(xt−1,1, . . . , xt−1,D) + εt , (2.2)
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where fd models the relationships between channels and εt represents noise. In prac-
tice, these dependencies are rarely static: they often evolve over time, meaning that fd
itself may change dynamically (Xuan & Murphy, 2007; Zhao & Shen, 2024). Moreover, in
many real-world scenarios, dependencies go beyond just the previous time step. Instead
of relying solely on t − 1, we can generalize the dependency structure by incorporating
multiple past time steps, leading to:

xt,d = fd(xt−1,1, . . . , xt−1,D, . . . xt−L,1, . . . , xt−L,D) + εt . (2.3)

The nature of these dependencies itself can vary over time. To capture this time vari-
ation explicitly, we can express xt,d as a sum of functions, each focusing on a different
lag:

xt,d = f
(1)
d (xt−1,1, . . . , xt−1,D) + · · ·+ f

(L)
d (xt−L,1, . . . , xt−L,D) + εt . (2.4)

In this formulation, each function f (i)d captures how the values of allD channels at time
t − i contribute to the evolution of channel d at time t . This significantly increases the
complexity of the dependency structure, making the modeling process more intricate.

Several challenges arise from this formulation:

• Exploding dependencies: The number of dependencies increases with the look-
back window L, leading to a rapid growth in the number of interactions that a model
must learn.

• Time-varying relationships: The functions f (i)d may themselves change over time,
introducing additional non-stationarity (Zhao & Shen, 2024).

• Uneven influence across lags: Some channels may have stronger influences at
certain lags than others, requiring models capable of dynamically weighting depen-
dencies.

CommonAssumption: Channel Independence. Despite the complexity of inter chan-
nel relationships, many works assume that each channel evolves independently. This sim-
plification leads to an alternative formulation where each xt,d depends only on the past
values of the same channel:

xt,d = f
(1)
d (xt−1,d) + · · ·+ f

(L)
d (xt−L,d) + εt . (2.5)

This assumption effectively removes all cross-channel dependencies and treats each
dimension separately. While such a formulation reduces model complexity, it can lead to
suboptimal performance.
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Figure 2.4: Illustration of channel interdependence in a multivariate time series. Channel
2 is partially dependent on Channel 1, while Channel 3 is influenced by both Channel 1
and Channel 2. These dependencies can evolve over time, making multivariate time series
modeling more complex than the univariate case.

These factors make multivariate time series considerably more complex than their uni-
variate counterparts. Effectively capturing both inter-channel relationships and long-range
dependencies requires advanced architectures, such as recurrent networks, transformers,
or graph-based models (Z. Wu, S. Pan, Long, Jiang, Chang, et al., 2020).

Time-Varying and Nonlinear Dependencies. Interdependencies between channels
are often dynamic rather than static. For instance, in financial markets, the correlation
between different asset prices may fluctuate based on macroeconomic conditions. Simi-
larly, in physiological signals such as EEG, the relationship between different brain regions
may vary depending on cognitive states. Traditional statistical models often assume fixed
linear dependencies, but real-world multivariate time series frequently require more flex-
ible models, such as attention-based architectures, to capture these shifting relationships
(Z. Wu, S. Pan, Long, Jiang, Chang, et al., 2020).

Illustration of Channel Interdependence. Figure 2.4 provides an example of a multi-
variate time series where different channels exhibit interdependencies. Channel 2 depends
partially on Channel 1, while Channel 3 is influenced by both Channel 1 and Channel
2. Such dependencies introduce challenges in forecasting and representation learning, as
models must capture both temporal patterns within each channel and cross-channel rela-
tionships that evolve over time.
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2.1.6 Applications of time series

Time series data are used in many different fields, showing how useful they are for solving
real-world problems. In industry, predictive maintenance is one of the main applications.
In this context, sensor data from machines are studied to find signs of possible future
breakdowns. For example, vibration measurements from turbines or temperature readings
from engines are checked regularly to spot unusual behavior. This helps plan repairs ahead
of time and avoid unexpected stops. It also reduces costs and improves safety, especially
in important sectors like aviation, manufacturing, and energy.

In medical and biological data analysis, time series are widely used to monitor physio-
logical signals such as electrocardiograms (ECG), electroencephalograms (EEG), and blood
glucose levels. For instance, in cardiology, ECG time series are analyzed to detect arrhyth-
mias and other heart conditions. Similarly, EEG time series play an important role in diag-
nosing epilepsy and other neurological disorders. Wearable devices also collect health data
continuously, enabling real-time monitoring of patients and the development of personal-
ized treatments. In genomics, time series are used to observe how gene activity changes
over time, offering insights into cellular processes and the effects of treatments.

In finance and economic forecasting, time series are indispensable tools for analyzing and
predicting market trends, stock prices, and macroeconomic indicators. Models are built to
capture the inherent volatility and dependencies in financial data, providing critical inputs
for decision-making in investment and risk management. For example, traders rely on
predictivemodels to forecast stock pricemovements, while policymakers analyze economic
indicators such as inflation and unemployment rates to guide fiscal and monetary policies.
Additionally, in the insurance industry, time series models are employed to assess risks,
predict claims, and optimize pricing strategies.

Beyond these primary domains, time series play a pivotal role in climate science and
environmental monitoring. Meteorologists use time series data from weather stations and
satellites to forecast weather patterns, monitor climate change, and predict extreme events
such as hurricanes and floods. In agriculture, time series analysis of soil moisture and
crop health data helps optimize irrigation schedules and maximize yields. Furthermore, in
transportation and logistics, time series are used to predict traffic patterns, optimize supply
chain operations, and improve public transportation schedules.

In energy management, time series data are vital for balancing supply and demand.
For example, electricity consumption data are analyzed to forecast energy needs, enabling
utilities to optimize generation and reduce waste. Renewable energy sources, such as solar
and wind, also rely on time series models to predict power generation based on weather
conditions.

In the field of retail and e-commerce, time series analysis enables demand forecasting,
inventory management, and sales optimization. By predicting seasonal trends and con-
sumer behaviors, businesses can ensure product availability and enhance customer satis-
faction while minimizing holding costs.
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Finally, in security and anomaly detection, time series data are used to monitor network
traffic for cybersecurity threats, detect fraudulent transactions, and identify suspicious
activities. These applications leverage the temporal nature of data to recognize unusual
patterns, ensuring proactive responses to potential risks.

From industrial automation to personalized medicine, and from financial markets to
environmental monitoring, time series data play a central role in improving efficiency, en-
suring safety, and supporting data-driven decisions. Their sequential and dynamic nature
makes them especially useful for understanding and predicting complex real-world sys-
tems across many sectors.

2.2 Time Series Classification

2.2.1 Connection with the Thesis

Time series classification involves assigning categorical labels to data sequences, capturing
distinct temporal patterns. Traditional approaches, including distance-based and feature-
based methods, have mostly addressed univariate series and rely heavily on handcrafted
distance measures or carefully engineered features. In this thesis, while classification is
not our primary objective, it serves as an important downstream task to validate the effec-
tiveness of learned representations. Specifically, in Chapter 5, we approach classification
from the perspective of compressing representations derived from foundation models, sig-
nificantly reducing computational complexity while maintaining high accuracy. Unlike
traditional time series classification methods reviewed in this section—which are primar-
ily designed for univariate data and direct optimization for classification accuracy—our
approach leverages general-purpose representations from larger models, which are then
adapted to classification tasks through efficient latent space compression.

2.2.2 Introduction

Time series classification (TSC) is the task of assigning predefined labels to sequences of
data points collected over time. This problem arises in various domains such as finance,
healthcare, environmental sciences, and engineering, where the goal is to categorize time-
dependent patterns into meaningful classes (Ismail Fawaz, Forestier, et al., 2019; Bagnall,
Lines, et al., 2017).

One of the key challenges in TSC is the variability in temporal patterns across different
sequences. Figure 2.5 illustrates an example of this problem. In particular, Figure 2.5a and
Figure 2.5b show representative instances from two different classes: a sinusoidal signal
and a sawtooth waveform. These patterns exhibit distinct structural characteristics, which
classifiers must leverage to achieve accurate predictions.
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To assess the separability of these time series in a lower-dimensional space, we apply
a t-SNE projection. As shown in Figure 2.5c, the two classes exhibit a good level of separa-
tion. In a more complicated scenario, overlapping regions suggest potential classification
difficulties. This highlights the importance of robust feature extraction in time series clas-
sification.

(a) Example of a Class 0 time series (sinu-
soidal signal).

(b) Example of a Class 1 time series (saw-
tooth signal).

(c) t-SNE projection of the time series, high-
lighting class separability.

Figure 2.5: Illustration of the time series classification problem. (a) and (b) depict repre-
sentative time series from two different classes, while (c) presents their distribution in a
t-SNE-reduced feature space.

2.2.3 Definition of the Problem

Let X = {xt}Tt=1 be a multivariate time series of length T , where each observation xt =
(xt,1, xt,2, . . . , xt,D) ∈ RD consists of D interdependent channels recorded at time step t .
The task of TSC can be formulated as follows: given a training set

D = {(X(i), y (i)) | i = 1, . . . , N},
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where y (i) ∈ {1, 2, . . . , K} denotes the class label of the i -th multivariate time series,
the objective is to learn a mapping function:

f : RT×D 7→ {1, 2, . . . , K}

that predicts the class label of any new, previously unseen multivariate time series X.

This problem formulation covers both univariate (D = 1) and multivariate (D > 1)
time series. The challenge in TSC lies in capturing both temporal dependencies within
each channel and inter-channel relationships across multiple variables (Bagnall, Lines, et
al., 2017; Baydogan & Runger, 2016). Additionally, time series can vary in length, sampling
rate, and noise level, requiring robust models capable of handling these variations while
maintaining high classification accuracy.

2.2.4 Traditional Approaches

A wide range of approaches have been proposed for time series classification. Before the
emergence of deep learning, themost commonly used techniques were broadly categorized
into distance-based, feature-based, and dictionary-based methods.

Distance-based methods. Distance-based methods classify time series by computing
a similarity measure between pairs of sequences and assigning a label based on the clos-
est reference examples. The most common approach is to use a nearest neighbor classifier,
where a test instance is assigned the label of its nearest neighbor in the training set. Specif-
ically, for a given distance function d(X,X′), a test series X is classified as:

ŷ = arg min
y (i)∈D

d(X,X(i)),

where D = {(X(i), y (i))}Ni=1 is the training set and y (i) denotes the class label of the
i -th series.

Euclidean Distance and its Limitations. The simplest similarity measure for time se-
ries is the Euclidean distance, which computes the squared differences between corre-
sponding points in two sequences. For two univariate time series X = (x1, . . . , xT ) and
X′ = (x ′1, . . . , x

′
T ) of equal length T , the Euclidean distance is defined as:

dEuc(X,X
′) =

√√√√ T∑
t=1

(xt − x ′t)2.
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Euclidean distance is widely used due to its simplicity and efficiency, with a compu-
tational complexity of O(T ). However, it presents several limitations that make it less
suitable for time series classification (Ding et al., 2008).

First, it assumes that time series are perfectly aligned in time. In reality, small temporal
shifts between similar sequences can lead to large Euclidean distances, causing misclassi-
fications. This sensitivity to phase variations makes Euclidean distance a poor choice for
many real-world time series applications. For instance, Figure 2.6a contrasts two signals
that are merely out of phase; the Euclidean approach will incorrectly penalize such shifts.

Second, while Euclidean distance is well-defined for univariate time series, its extension
to the multivariate setting is less straightforward. A common approach is to compute the
average Euclidean distance across all D channels of a multivariate time series:

dEuc(X,X
′) =

1

D

D∑
d=1

dEuc(X·,d ,X
′
·,d),

where X·,d represents the univariate time series corresponding to the d-th channel.
However, this approach implicitly assumes that all channels are independent and con-
tribute equally to the classification decision (Shokoohi-Yekta et al., 2017). This is problem-
atic because, in many applications, such as physiological monitoring or industrial sensor
data, channels exhibit complex interdependencies that are ignored by this naive averaging
scheme.

As a result, Euclidean distance is generally not well-suited for multivariate time se-
ries classification, as it fails to capture cross-channel relationships and temporal misalign-
ments. Alternative distance measures, such as Dynamic Time Warping (DTW), have been
proposed to better handle these challenges (Kate, 2016).

Dynamic Time Warping (DTW). DTW is a widely used measure that allows align-
ments between time series by introducing a warping function (Berndt & Clifford, 1994).
The idea is to find an optimal alignment between two sequences by minimizing the cumu-
lative cost of warping:

dDTW(X,X
′) = min

π

∑
(t,t ′)∈π

(xt − x ′t ′)2,

where π is a warping path that defines an alignment between X and X′.

The optimal path is typically computed via dynamic programming using a cumulative
cost matrix, denoted D. The element D(t, t ′) represents the minimal cost of aligning the
subsequences X1..t and X′1..t ′ (i.e. the first t points of X and the first t ′ points of X′). The
recurrence relation is given by:

D(t, t ′) = min
{
D(t − 1, t ′), D(t, t ′ − 1), D(t − 1, t ′ − 1)

}
+ (xt − x ′t ′)2.
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(a) Two signals. (b) Warping path in DTW cost matrix.

(c) Final DTW alignment.

Figure 2.6: Comparison of Euclidean vs. DTW. (a) illustrates the original signals. (b) shows
DTW cost matrix with the warping path in red and (c) the resulting point-to-point align-
ment, highlighting how DTW handles temporal shifts more effectively than a strict Eu-
clidean comparison.

Once D is fully computed, the DTW distance is read off from its bottom-right corner, i.e.
dDTW(X,X

′) = D(T, T ′), where T is the length of X and X′ is of the same or different
length. DTW is robust to phase shifts and local distortions, making it effective for time
series classification. However, its quadratic complexity O(T 2) makes it computationally
expensive for large-scale datasets (Rakthanmanon et al., 2012). Figure 2.6b illustrates the
warping path computed in a DTW cost matrix, while Figure 2.6c shows how DTW re-
aligns the two signals for a much more appropriate correspondence than Euclidean dis-
tance would yield.

Variations and Optimizations of DTW. The main issue with DTW is that its compu-
tational complexity is quadratic, i.e., O(T 2), where T is the length of the time series. This
makes it impractical for large datasets. To address this, various improvements have been
proposed to make DTW faster and more efficient while maintaining its accuracy.

• DTW with Global Constraints: The standard DTW algorithm allows for uncon-
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strained alignments between time series, permitting any point in one sequence to be
matched with any point in the other. While this flexibility ensures an optimal align-
ment in theory, it can also result in extreme temporal distortions, yielding unrealistic
correspondences. To mitigate this issue, global constraints are introduced to confine
the warping path within a predefined region, thereby enforcing a more structured
alignment and reducing computational complexity. Two widely adopted constraints
include:

– Sakoe-Chiba Band (Sakoe & Chiba, 1978): This constraint restricts the warping
path to a symmetric band around the main diagonal of the DTW cost matrix.
By limiting the extent to which time steps can deviate from a direct one-to-one
alignment, it prevents excessive stretching and reduces the number of admis-
sible alignments, significantly accelerating the computation toO(TW ), where
W is the size of the band.

– Itakura Parallelogram (Itakura, 1975): Unlike the fixed-width Sakoe-Chiba Band,
the Itakura parallelogram adapts its shape dynamically, forming a region that
expands as one moves further along the time axis, reducing the complexity to
O(T logT ). This structure is particularly effective for speech and audio pro-
cessing, where variations in speaking speed often require more flexible but still
controlled warping.

These constraints enhance computational efficiency by reducing the search space of
DTW.

• Lower Bounding Techniques: A fundamental limitation of DTW lies in its qua-
dratic complexity, making it computationally expensive when comparing large col-
lections of time series. However, in many practical scenarios, it is possible to preemp-
tively determine whether two time series are sufficiently dissimilar without com-
puting their full DTW distance. Lower bounding techniques leverage this princi-
ple to prune unnecessary computations, thereby significantly improving efficiency.
For instance, the LB-Keogh (Keogh & Ratanamahatana, 2005) is an approach that
constructs an envelope around a reference time series, defining an upper and lower
bound at each time step. If the query series deviates beyond these bounds at any po-
sition, it is guaranteed that the DTW distance exceeds a certain threshold, allowing
early rejection without explicit computation. This method is particularly advanta-
geous in nearest-neighbor search, where a large fraction of candidates can be quickly
discarded. These techniques are extremely useful when searching for similar time se-
ries in large databases because they can quickly eliminate many candidates.

• FastDTW: (Salvador & Chan, 2007a) is an approximation method that reduces the
complexity of DTW to O(T logT ) by adopting a multi-resolution approach. First,
it begins with a downsampling of the time series, reducing the number of points to
process. Then, DTW is applied to this simplified version, providing an initial approx-
imate alignment at a lower computational cost. Finally, the resolution is gradually
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increased, and the warping path is refined accordingly to improve the initial align-
ment. Thanks to this hierarchical approach, FastDTW offers an effective trade-off
between speed and accuracy.

• SoftDTW: One of the main drawbacks of DTW is its lack of differentiability, which
prevents its direct integration into gradient-based optimization frameworks such as
deep learning. SoftDTW (Cuturi & Blondel, 2017) overcomes this limitation by intro-
ducing a differentiable relaxation of DTW. To achieve this, it replaces the standard
min operator in the DTW recursion with a soft minimum, computed using the log-
sum-exp function, allowing for smooth transitions between alignment costs. This
reformulation enables DTW to be used as a loss function within machine learning
models, facilitating end-to-end training. SoftDTW also enhances model robustness
in tasks such as representation learning and sequence alignment in neural architec-
tures.

These techniques are particularly beneficial in high-dimensional time series analysis, where
direct DTW computations may be impractical.

Alternative Distance Measures. Other similarity measures have been developed to
handle different challenges in time series classification. The Edit Distance on Real Se-
quences (EDR) measures similarity by counting the number of insertions, deletions, and
substitutions required to align two sequences, providing robustness to noise and missing
values (L. Chen et al., 2005). The Longest Common Subsequence (LCSS) computes similar-
ity based on the length of the longest matching subsequence, which makes it particularly
robust to noise and outliers (Vlachos et al., 2002). Finally, the Time Warp Edit Distance
(TWED) introduces a penalty term to explicitly account for temporal differences between
aligned points, thus improving robustness to temporal shifts (Marteau, 2009).

Nearest Neighbor Classification with DTW. A commonly used classifier in time se-
ries classification is the 1-NN DTW, where the class label of a test series is assigned based
on its nearest neighbor under DTW distance (Bagnall, Lines, et al., 2017). Despite its sim-
plicity, 1-NN DTW has been shown to be a strong baseline, outperforming many feature-
based methods (Dau et al., 2019). However, DTW-based nearest neighbor classification
suffers from several limitations. First, it has a high computational cost, as without opti-
mizations, its complexity is O(NT 2), making it impractical for large datasets. Moreover,
DTW does not naturally produce interpretable features, limiting its applicability in ex-
plainable models. Finally, its performance is sensitive to warping parameters, such as the
warping window constraints, which require careful tuning (Lines, L. M. Davis, et al., 2015).

Feature-Based Methods. Feature-based approaches involve transforming raw time se-
ries data into a set of informative features that can be utilized by standard machine learn-
ing algorithms for classification tasks (Fulcher & Jones, 2014). This transformation aims
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(a) Original Time Series. (b) Fourier Transform.

(c) Shapelet Extraction. (d) Shapelet Transform.

Figure 2.7: (a) The original signal has a sinusoidal baseline plus a repeated bump. (b) Fourier
transform pinpoints dominant frequencies, here dominated by the low-frequency sine plus
harmonics from the bump. (c) A short subsequence (shapelet) is extracted from the first
occurrence of the bump. (d) Shapelet transform (distance profile) shows low-distance min-
ima at each period where the shape recurs.
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to capture the essential characteristics and underlying patterns of the time series, making
them more effective and interpretable for downstream modeling.

Specifically, we illustrate statistical descriptors, frequency-domain analysis, and shapelets
on a single time series. Figure 2.7a shows an example signal that combines a sinusoidal
baseline with a recurrent bump. Meanwhile, the Fourier transform in Figure 2.7b identi-
fies the dominant frequencies, including the low-frequency sine component plus smaller
harmonic peaks from the bump. For shapelets, Figure 2.7c demonstrates how a short sub-
sequence (shapelet) can be extracted from the first occurrence of the bump. The resulting
shapelet transform in Figure 2.7d measures the distance between this shapelet and every
subsequence in the entire signal, showing clear minima at each repetition of the bump.
These techniques—statistical, spectral, and shapelet-based—can be used independently or
combined to characterize a wide range of time series patterns.

• StatisticalDescriptors. These features summarize the fundamental statistical prop-
erties of time series data, offering insights into their distribution and temporal dy-
namics. The mean provides a measure of the central tendency, while the variance
quantifies dispersion around the mean, both foundational for understanding the
overall behavior of the time series (H. Deng et al., 2013). Skewness assesses the asym-
metry of the data distribution, indicating whether data are skewed towards higher
or lower values, whereas kurtosis measures the "tailedness" of the distribution, re-
vealing the presence of outliers or extreme values (H. Deng et al., 2013). Autocor-
relation coefficients measure the correlation between observations at different time
lags, identifying repeating patterns or periodicity within the time series (H. Deng et
al., 2013). Finally, Hjorth parameters, comprising activity, mobility, and complexity,
offer insights into the signal’s power, frequency characteristics, and temporal struc-
ture, particularly useful for analyzing non-stationary biomedical signals like EEG and
EMG (Hjorth, 1970).

• Frequency-Domain Features. Analyzing the frequency components of time se-
ries reveals periodic structures and oscillatory behaviors not readily apparent in the
time domain. Figure 2.7b illustrates how the Fourier transform can locate dominant
frequencies linked to both sinusoidal baselines and recurrent patterns. The Fourier
transform decomposes the time series into sinusoidal components, identifying dom-
inant frequencies and amplitudes, aiding in the detection of periodic patterns (Keogh
& Kasetty, 2001). The wavelet transform decomposes signals at various scales, cap-
turing frequency and temporal information effectively for non-stationary or tran-
sient signals (Addison, 2017). Additionally, the Hilbert-Huang transform, an empiri-
cal method decomposing time series into intrinsicmode functions, provides instanta-
neous frequency information, making it particularly suited for analyzing non-linear
and non-stationary signals, such as biomedical and geophysical data (Huang et al.,
1998).

• Shapelets. Shapelets are discriminative subsequences within time series highly in-
dicative of class membership, capturing localized patterns for distinguishing classes.
Figure 2.7c demonstrates how a shapelet can be extracted from a specific region of
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the signal, while Figure 2.7d shows the resulting distance profile (shapelet transform),
highlighting occurrences across the series. Shapelet discovery involves identifying
subsequences maximizing class separation, subsequently used as features in classi-
fication models to capture class-specific patterns (Ye & Keogh, 2009). The shapelet
transform converts original time series data into a feature space defined by distances
to discovered shapelets, enabling conventional classifiers on transformed data (Hills
et al., 2014). Moreover, the generalized random shapelet forest integrates shapelet-
based features into a random forest framework, enhancing classification by captur-
ing diverse discriminatory patterns (Karlsson et al., 2016).

Dictionary-BasedMethods. Dictionary-based approaches represent time series as sym-
bolic patterns (words), enabling text-like processing. These methods involve discretizing
time series into symbolic representations, followed by histogram-based feature extraction.
Symbolic Aggregate approXimation (SAX) converts continuous time series into discrete
symbol sequences while preserving essential structural information (J. Lin, Keogh, Lonardi,
et al., 2003). Bag-of-SAX-Symbols (BOSS) constructs histograms of symbolic words derived
from sliding windows to capture recurrent motifs in time series data (Schäfer, 2015). SAX-
VSM (Vector Space Model) extends SAX by applying a term-frequency weighting scheme,
emphasizing the most informative subsequences (Senin & Malinchik, 2013).

Ensemble Methods. Ensemble classifiers improve classification performance by aggre-
gatingmultiplemodels trained on different representations of the data. One of themost in-
fluential ensemble classifiers in time series classification is theCollective of Transformation-
Based Ensembles (COTE), which combines models trained on diverse representations, such
as transformations into different feature spaces (Lines & Bagnall, 2018). An improved vari-
ant, HIVE-COTE, integrates hierarchical voting mechanisms along with additional feature
spaces, leading to state-of-the-art accuracy on benchmark datasets (Lines, S. Taylor, et
al., 2018). More recently, HIVE-COTE was extended to HIVE-COTE 2.0, incorporating new
components like the hierarchical ensemble frameworkwith additional classifiers (e.g., TDE,
Arsenal, DrCIF), designed to capture a wider range of complex patterns in time series data,
thereby further improving classification performance (Middlehurst et al., 2021).

2.2.5 Deep Learning-Based Approaches

With the rise of deep learning, neural network-based methods have become prominent for
time series classification. Their key advantage lies in learning hierarchical representations
directly from raw data, avoiding manual feature engineering (Ismail Fawaz, Forestier, et
al., 2019). Common deep architectures include:

Convolutional Neural Networks (CNNs). CNNs can capture local time dependencies
via convolution filters, making them effective for time series classification. One notable
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example is the Fully Convolutional Network (FCN) (Z. Wang et al., 2017), which employs
multiple convolutional layers to extract spatial-temporal features. Another widely used
architecture is ResNet, adapted for time series by incorporating residual connections to
mitigate vanishing gradient issues and improve deep feature learning (K. He et al., 2016;
Ismail Fawaz, Forestier, et al., 2019). More recently, InceptionTime (Ismail Fawaz, Lucas, et
al., 2020) has extended the Inception architecture to time series data, leveragingmulti-scale
convolutions to enhance feature extraction across different temporal resolutions. These
models have demonstrated strong performance across various time series classification
benchmarks, highlighting the effectiveness of CNNs in capturing hierarchical and local
dependencies in sequential data.

Recurrent Neural Networks (RNNs). RNNs are designed to handle sequence data.
Variants like LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Unit) address
the issues of vanishing/exploding gradients in vanilla RNNs, allowing them to capture long-
term dependencies (Hochreiter & Schmidhuber, 1997a).

Transformers. Originally introduced for Natural Language Processing (NLP), Trans-
formers rely on self-attention mechanisms. Recent work has applied Transformer-based
models to time series classification and forecasting, showing competitive results (M. Liu
et al., 2021). Key advantages include parallel processing and the ability to capture both
short-range and long-range dependencies without recurrent operations.

2.2.6 Benchmark Datasets

Evaluating time series classification algorithms typically involves standardized reposito-
ries, metrics, and protocols. This section provides an overview of popular benchmark
datasets and commonly used performance metrics.

UCR/UEA Time Series Classification Archive. The UCR/UEA Archive is one of the
most comprehensive and widely used repositories dedicated to benchmarking time se-
ries classification algorithms. Initially developed at the University of California, Riverside
(UCR) for univariate datasets and later extended by the University of East Anglia (UEA) to
include multivariate datasets, it currently hosts over 150 diverse datasets. These datasets
cover various domains, including image outlines (e.g., BeetleFly, FaceAll, DiatomSizeRe-
duction), sensor readings (e.g., InsectWingbeat, Car, Cricket), and biomedical signals (e.g.,
ECG200, ECG5000, EEG Eye State). The archive’s datasets vary significantly in length
(from tens to thousands of time steps), number of classes (ranging from binary to multi-
class problems with dozens of classes), and dimensionality, featuring a large collection of
univariate datasets (UCR) alongside an increasing number of multivariate datasets main-
tained within the UEA archive (Dau et al., 2019; Bagnall, Dau, et al., 2018a). The archive
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provides train/test splits for each dataset to standardize comparisons and ensure repro-
ducibility, and researchers often measure performance using accuracy on these predefined
splits (Dau et al., 2019). Some tasks, especially within the multivariate datasets, may also
require domain-specific preprocessing or normalization.

Additional Benchmarks. Beyond UCR/UEA, other notable benchmarks include:

• Physionet Collections: Contain ECG and other physiological signals, often used
for arrhythmia detection (Goldberger et al., 2000).

• PLAsTiCC Challenge Dataset (Hložek et al., 2020): Contains simulated astronom-
ical time-series data (light curves) from 14 different types of astronomical objects,
designed for classification tasks in astrophysics.

2.2.7 Evaluation Metrics for Time Series Classification

Several evaluation metrics can be employed, each offering different insights:

• Accuracy:

Accuracy =
Number of correct predictions

Total number of samples
.

This is the most common metric, reflecting the overall proportion of correctly clas-
sified instances. However, it can be misleading in imbalanced-class scenarios, where
one class dominates.

• Precision:

Precision =
True Positives (TP)

TP+ False Positives (FP)
.

Precision answers: "Of all samples predicted as positive, how many are truly posi-
tive?"

• Recall (a.k.a. Sensitivity):

Recall =
TP

TP+ False Negatives (FN)
.

Recall answers: "Of all positive samples, how many did we correctly identify?"

• F1-Score:

F1 = 2×
Precision× Recall
Precision+ Recall

.

This is the harmonic mean of precision and recall. F1-Score is particularly helpful in
handling class-imbalance, as it balances both false positives and false negatives.
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• Balanced Accuracy:

Balanced Accuracy =
1

C

C∑
i=1

TPi
TPi + FNi

,

where C is the number of classes. Balanced accuracy averages the recall for each
class and is recommended when class imbalance is severe.

• ROC Curve & AUC (Area Under the ROC Curve): The ROC curve plots the true
positive rate (TPR) against the false positive rate (FPR) at various threshold settings.
The AUC summarizes the ROC curve as a single number between 0 and 1, indicating
the classifier’s overall ability to discriminate between classes. High AUCmeans high
separability (Fawcett, 2006).

• Precision-Recall Curve & Average Precision (AP): More informative than ROC
in highly imbalanced datasets, the precision-recall curve plots precision vs. recall.
The AP (average precision) is the area under this curve, providing insight into per-
formance under different threshold settings (Saito & Rehmsmeier, 2015).

Overall, the combination of standardized benchmarks (UCR/UEA) and a diverse set of met-
rics (accuracy, F1, ROC-AUC, etc.) provides a solid foundation for evaluating time series
classification algorithms in both academic and industrial contexts.

2.2.8 State of the Art in Time Series Classification

Recent advances in time series classification (TSC) have led to a three-way contest among
fast random-kernel methods, advanced ensemble approaches, and deep learning archi-
tectures. Below is an overview that integrates recent developments and highlights key
differences between univariate and multivariate TSC.

Univariate TSC. On standard univariate datasets (e.g., the UCR Archive), three primary
families have emerged:

• ROCKET-based Models: Methods like ROCKET, Multi-ROCKET, and MiniRocket
leverage large numbers of random convolutional kernels to rapidly transform time
series data. They achieve state-of-the-art performance with training times measured
in seconds or minutes, exhibiting linear complexity in both series length and the
number of training examples (Dempster et al., 2020a; Tan et al., 2022).

• Ensemble Methods: Approaches such as HIVE-COTE (and its successor HIVE-
COTE 2.0) combine heterogeneous classifiers—including shapelet, dictionary, inter-
val, and similarity-based methods—to maximize accuracy. Despite high computa-
tional demands, these ensembles consistently achieve top-ranked accuracy on bench-
mark tasks (Middlehurst et al., 2021; Shifaz et al., 2020).
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• Deep Convolutional Architectures: Models such as InceptionTime utilize multi-
ple convolutional modules, often with residual connections, to learn complex repre-
sentations directly from raw time series data. These methods frequently outperform
traditional baselines, especially on larger datasets (Ismail Fawaz, Lucas, et al., 2020).

In practice, accuracy differences among these methods are often marginal, suggest-
ing that dataset-specific characteristics (e.g., series length, noise, pattern complexity, and
interpretability needs) can determine the best-suited method.

Multivariate TSC. Multivariate time series classification introduces additional chal-
lenges due to the inherent complexity and high dimensionality of multi-channel data. Key
approaches in this context include:

• Multivariate Ensembles: Ensemble methods specifically tailored for multivari-
ate data, such as WEASEL+MUSE (Schäfer & Leser, 2017), DrCIF (Middlehurst et
al., 2021), and adapted versions of HIVE-COTE, handle multi-channel inputs effec-
tively by incorporating dimension-specific weighting or channel-selection mecha-
nisms. However, training times often become prohibitive as dimensionality increases.

• Transformer-based Models: Recently, Transformer architectures leveraging self-
attention and cross-attention mechanisms (e.g. TimesNet) have shown state-of-the-
art performance in multivariate classification tasks. These models excel at capturing
long-range dependencies across channels but come with significant computational
resource demands, especially GPU memory (Zerveas et al., 2021; Yixuan Nie et al.,
2023).

• CNN/RNNHybrids: Architectures combining convolutional and recurrent networks
(e.g., LSTM-FCN) capture correlations among channels efficiently, performing par-
ticularly well when multivariate channels are highly correlated. Nevertheless, these
models may underfit in scenarios with heterogeneous channels or limited training
data, since capturing complex interactions typically requires larger datasets (Karim
et al., 2019; Seyfi et al., 2022).

The transition from univariate to multivariate TSC is not merely an increase in di-
mensionality; it demands reconsidering model architectures to effectively fuse informa-
tion across channels and manage computational overhead. Additionally, interpretability
considerations may favor methods such as shapelet or dictionary-based classifiers, which
explicitly identify discriminative patterns and facilitate explanations of model predictions
(Ye & Keogh, 2009; Schäfer, 2015).

In summary, the state-of-the-art in TSC reflects a nuanced trade-off among compu-
tational efficiency, predictive accuracy, and interpretability. Univariate TSC benefits from
well-tuned random-kernel (ROCKET variants) and ensemble methods (HIVE-COTE), while
multivariate TSC requires specialized adaptations, including Transformers, to address in-
creased complexity. Model selection thus depends heavily on dataset characteristics, com-
putational resources, and interpretability requirements.
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2.3 Time Series Forecasting

2.3.1 Connection with the Thesis

Multivariate time series forecasting involves analyzing historical observations to predict
future values, a task complicated by temporal dependencies, channel interactions, and
non-stationarity. This thesis directly addresses these challenges, as forecasting consti-
tutes one of our core contributions. In Chapter 3, we introduce SAMformer, which departs
from traditional transformer-based methods by incorporating sharpness-aware minimiza-
tion and channel-wise attention to enhance generalization, unlike existing approaches that
primarily rely on decomposition techniques or assume independence between channels.
Moreover, in Chapter 4, we propose a multi-task regularization framework specifically de-
signed to improve forecasting performance of models that assume channel independence.
By integrating this regularization into the learning objective, we explicitly enforce shared
representations across channels, significantly boosting predictive accuracy and enhancing
interpretability. Thus, while we address a similar forecasting problem as prior work, our
methods differ substantially by optimizing across channels and refining the optimization
landscape to achieve more robust and interpretable solutions.

2.3.2 Introduction

Time series forecasting is the task of predicting future values of a time-dependent se-
quence based on its past observations and other exogenous variables. It is a critical prob-
lem in many fields, including finance, supply chain management, energy, and healthcare.
This section reviews the fundamental definitions, traditional approaches, machine learning
methods, and recent deep learning models for time series forecasting.

2.3.3 Definition and Problem Formulation

Time series forecasting aims to predict future observations based on historical data, gen-
erally under constraints of non-stationarity, domain shifts, and variable horizon lengths
(George E. P. Box et al., 2015; Hyndman & Athanasopoulos, 2008). Let Xt ∈ Rd be the vec-
tor of observations at time t , and consider a univariate or multivariate time series {Xt}Tt=1.
The forecasting task is to predict {XT+1, . . . ,XT+H} for a horizon H > 0, given past ob-
servations {X1, . . . ,XT} and possibly ncov external covariates {Zt}. We define the fore-
casting function as a mapping:

f : RT×D × RT×ncov −→ RH×D,

where each input sequence is given by {Xt}Tt=1 withXt ∈ RD and {Zt}Tt=1 withZt ∈ Rncov .
The function f then outputs a forecast

{X̂T+1, . . . , X̂T+H} ∈ RH×D,
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Figure 2.8: Illustration of a forecasting problem. The time series is divided into looback and
forecasting pairs.

representing the predicted values over the future horizon of length H.

Short- vs. Long-Horizon Forecasting. Forecasting horizons can vary significantly. Short-
term forecasting (often defined asH < 96) generally focuses on intervals from a few hours
to a few days, making it suitable for operational decisions (e.g., traffic, energy load). Long-
term forecasting (H ≥ 96), by contrast, may extend over weeks, months, or even years,
necessitating robust handling of seasonality, trends, and evolving external conditions. Re-
cent empirical findings indicate that Transformers may outperform simpler baselines for
H < 96, but for longer horizons (H ≥ 96), linear or more specialized models can surpass
Transformers (Zeng, M. Chen, et al., 2023).

Domain Shift andNon-Stationarity. In practice, distributional changes (domain shifts)
between training, validation, and test sets complicate forecasting. Seasonal patterns, abrupt
events, or sensor drift can introduce non-stationarities that degrade model performance
over time. While some models (e.g., adaptive or recurrent neural networks) partially ad-
dress such shifts, consistent re-training or model adaptation is often required in real-world
deployments (George E. P. Box et al., 2015).

Relation to Time Series Classification. TSC typically deals with shorter series like
seconds of accelerometer data in UCR/UEA archives (Bagnall, Lines, et al., 2017; Dau et al.,
2019), focusing on assigning labels based on shape or local patterns. Forecasting, by con-
trast, often involves substantially longer sequences —sometimes spanning years— and em-
phasizes predicting future values rather than categorizing entire sequences. Consequently,
TSC datasets may be seconds or minutes in duration, whereas forecasting problems can
easily range from days to years of data. This scale difference strongly influences model
choice: short TSC tasks may favor shapelet-based or CNN approaches, while long-horizon
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forecasting challenges highlight issues of trend, seasonality, and domain shift.

Challenges in Real-World Settings. In practical scenarios, multivariate time series
forecasting often confronts missing data and outliers stemming from sensor failures, ex-
treme events, or irregular sampling, thereby necessitating robust preprocessing or impu-
tation. Moreover, non-linear and often intricate interdependencies across multiple chan-
nels demand more advanced architectures (e.g., attention mechanisms, graph-based ap-
proaches). Lastly, long-term deployments require continual model maintenance, as new
patterns may emerge and call for periodic updates or re-training.

In the following, we briefly survey classical statistical approaches before examining
advanced neural architectures. While historical techniques like ARIMA or exponential
smoothing offer interpretability and strong performance in stable conditions, they can
be outperformed by deep or hybrid methods, particularly in high-dimensional or highly
non-stationary contexts (Hyndman & Athanasopoulos, 2008).

2.3.4 Traditional Statistical Methods

Traditional forecasting models prioritize interpretability and simplicity, relying on parsi-
monious structures to represent temporal patterns effectively. Classical autoregressive (AR)
and moving average (MA) models assume linear relationships between past observations
or noise terms, forming the foundations of time series modeling. ARIMA (George E. P.
Box et al., 2015) extends these approaches by introducing differencing operations to han-
dle trends and achieve stationarity, effectively capturing linear autocorrelations. SARIMA
further generalizes ARIMA by explicitly modeling seasonal components, making it partic-
ularly suitable for data exhibiting periodic behavior.

Exponential smoothing methods (ETS) offer another widely-used class of forecasting
tools. They generate forecasts by computing weighted averages of past observations with
exponentially decaying weights, naturally emphasizingmore recent data points (Hyndman
& Athanasopoulos, 2008; Gardner, 2006). The comprehensive ETS framework developed
by Hyndman, Koehler, et al. 2002 encompasses various configurations of error, trend (ad-
ditive or multiplicative), and seasonality, often excelling in stable univariate settings with
clear seasonal patterns.

Several advanced extensions have also emerged to address more complex seasonal
structures and nonlinear patterns. TBATS (Livera et al., 2011) expands the ETS approach by
integrating trigonometric functions to represent intricate or multiple seasonalities and ap-
plying Box-Cox transformations to manage nonlinearities and heteroskedasticity. Prophet
(S. J. Taylor & Letham, 2018), developed by Meta (formerly Facebook), employs a decom-
posable framework, combining piecewise linear growth trends with custom seasonal and
holiday effects. Its strength lies in interpretability and the explicit integration of domain-
specific knowledge, making it appealing for practical forecasting applications.

Despite their simplicity and widespread use, traditional methods can struggle with
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highly nonlinear relationships, significant domain shifts, ormultivariate complexities, high-
lighting the need for more flexible forecasting approaches.

2.3.5 Machine Learning Approaches

Machine learning (ML) techniques have emerged as flexible alternatives to traditional sta-
tistical models, particularly effective at modeling nonlinear relationships, complex depen-
dencies, and multivariate interactions (Ahmed et al., 2010; Bontempi et al., 2012). Though
sometimes sacrificing interpretability, ML models often outperform classical approaches
in scenarios with large or high-frequency datasets.

Tree-based methods such as Random Forests (RF) and gradient boosting frameworks
(XGBoost, LightGBM, CatBoost) have become standard tools for forecasting. RF mod-
els (Breiman, 2001) leverage ensembles of decision trees trained on random subsets of data
and features, reducing overfitting and capturing nonlinearities effectively. Gradient boost-
ing methods iteratively construct ensembles by fitting residuals, often achieving superior
predictive performance on extensive datasets, albeit at higher computational costs (T. Chen
& Guestrin, 2016; Ke et al., 2017; Dorogush et al., 2018). Other regression approaches, such
as Support Vector Regression (SVR) (Smola & Schölkopf, 2004) and Multi-Layer Percep-
trons (MLP) (G. Zhang et al., 1998), can similarly achieve high accuracy, provided carefully
engineered features and hyperparameter tuning.

Crucially, ML methods typically rely on feature engineering to uncover informative
temporal patterns. Techniques include constructing lagged variables, applying differencing
to remove trends, incorporating calendar-based features (day-of-week, month-of-year, or
special events), and using Fourier terms (Harvey, 1993) to approximate complex seasonal
patterns. Although powerful, extensive feature engineering can be time-consuming and
difficult to maintain.

Ensemble strategies can further enhance forecasting performance by combining multi-
ple methods to leverage their complementary strengths. Stacking or blending approaches
train meta-learners on top of diverse base models (e.g., ARIMA combined with gradient
boosting) to capture a broader range of patterns (Wolpert, 1992; Makridakis, Spiliotis, et al.,
2020). Hybrid statistical–ML models, such as combining exponential smoothing residuals
with neural networks or random forests, similarly capitalize on both linear and nonlinear
structures within the data (G. Zhang, 2003).

Ultimately, the choice of forecasting method must align closely with dataset charac-
teristics, resource availability, interpretability requirements, and forecasting horizon con-
siderations, as each method offers distinct advantages and trade-offs.
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2.3.6 Deep Learning Methods

Deep learning models have recently emerged as powerful approaches for time series fore-
casting, capable of capturing intricate long-range temporal dependencies, complex sea-
sonal patterns, and interactions among multivariate channels. Unlike traditional statisti-
cal or tree-based methods, deep architectures learn useful representations directly from
raw data, significantly reducing the need for explicit feature engineering. However, their
predictive power often comes at the cost of reduced interpretability and increased compu-
tational requirements (Casolaro et al., 2023).

Recurrent Neural Networks (RNNs). Recurrent neural networks, particularly Long
Short-TermMemory (LSTM) and Gated Recurrent Units (GRU), have been widely adopted
due to their capacity to model sequential dependencies through recurrent updates. LSTMs
(Hochreiter & Schmidhuber, 1997b) leverage gating mechanisms specifically designed to
mitigate issues like vanishing gradients, enabling them to effectively capture long-term
temporal correlations. GRUs (Cho et al., 2014) simplify these gating structures, reducing
parameter complexity while often achieving comparable forecasting accuracy. Extensions
of recurrent architectures, such as DeepAR (Salinas et al., 2020a), adopt probabilistic frame-
works for forecasting distributions of future values, proving particularly effective when
handling multiple correlated time series simultaneously.

Convolutional Neural Networks (CNNs). Convolution-based methods offer compu-
tational advantages over recurrent models due to their inherently parallelizable architec-
tures. Temporal Convolutional Networks (TCN) (S. Bai et al., 2018), for example, exploit
dilated convolutions and residual connections to achieve effective modeling of long-range
temporal dependencies without explicit recurrent structures. Similarly, WaveNet-inspired
architectures (Oord et al., 2016), originally developed for audio signal processing, have
demonstrated strong performance in forecasting tasks by employing stacked dilated con-
volutions to efficiently model both local and global temporal features.

Other Models. Hybrid models, such as LSTNet (Guokun Lai et al., 2018a), further capi-
talize on the strengths of CNNs and RNNs, using convolutional layers for short-term pat-
tern detection followed by recurrent layers to capture longer-term dependencies. Recent
deep learning architectures also include graph neural networks (GNNs), notably useful
when explicit relationships among variables, such as spatial or topological structures in
sensor networks, can be leveraged to enhance predictive accuracy (Z. Wu, S. Pan, Long,
Jiang, C. Zhang, et al., 2020).

Despite their impressive capabilities, deep learning approaches typically require large
datasets and substantial computational resources. Moreover, they may demand extensive
hyperparameter tuning to achieve optimal performance and interpretability requirements
in applied forecasting scenarios.
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Transformers and Attention-Based Models. Transformer architectures (Vaswani et
al., 2017) have recently gained significant attention in time series forecasting due to their
powerful self-attention mechanisms, capable of effectively capturing long-range temporal
dependencies. Unlike traditional recurrent neural networks (RNNs), transformers han-
dle sequences through parallel computations, enabling better scalability and efficiency
for forecasting tasks involving long sequences. However, the standard transformer suf-
fers from quadratic computational and memory complexity, O(T 2d), where T denotes
sequence length and d is the embedding dimension. This limitation becomes particularly
restrictive for very long time series, motivating several adaptations specifically designed
to mitigate these computational constraints.

Efficient Transformers for Long-Horizon Forecasting. To address the quadratic com-
plexity of standard transformers, various specialized architectures have emerged:

• Informer (H. Zhou et al., 2021) proposes probSparse attention, a sparsified attention
mechanism reducing complexity toO(T logT ), coupled with a distillation operation
to remove redundant temporal information.

• Autoformer (H. Wu et al., 2021) introduces a series decomposition block explic-
itly modeling trend and seasonality, replacing conventional attention with an auto-
correlation mechanism to select relevant temporal lags efficiently.

• FEDformer (T. Zhou,Ma, et al., 2022) employs a frequency-domain attention scheme
based on Fourier and Wavelet transforms, capturing dependencies in both time and
frequency domains and significantly reducing computational load.

• PatchTST (Yuqing Nie et al., 2023), inspired by vision transformers, divides long time
series into patches to enhance the inductive bias and effectiveness of self-attention
mechanisms, leading to improved performance on extended forecasting horizons.

• iTransformer (Yong Liu et al., 2024) utilizes instance-based attention to dynamically
adapt attention weights according to local temporal patterns rather than relying
solely on static positional encodings.

• Additional efficient architectures include Reformer (Kitaev et al., 2020), which ap-
plies locality-sensitive hashing (LSH) for sublinear attention approximation, andLog-
Trans (Shiyang Li et al., 2019), employing log-sparse attention that prioritizes local
and distant interactions.

Challenges andLimitations of Transformers. Despite their effectiveness, transformer-
based models are not without shortcomings. Even optimized variants often require sub-
stantial computational resources, limiting their applicability in resource-constrained envi-
ronments. Furthermore, recent research (Zeng, Yan, et al., 2023) highlights that transform-
ers can underperform simpler linear or MLP-based models in extremely long forecasting
horizons (H ≥ 96), questioning their suitability for certain long-term forecasting tasks.
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Additionally, standard transformers often suffer from training instability and convergence
to sharp local minima, particularly when dealing with smaller datasets or limited data
availability (Dong et al., 2021; L. Liu et al., 2020). While these issues have been actively
addressed in computer vision and NLP through approaches like sharpness-aware mini-
mization (SAM) (Foret et al., 2021), similar solutions remain under-explored within the
time series community.

MLP-based Alternatives: Mixer Models. To circumvent complexities associated with
self-attention mechanisms, recent work has proposed mixer-based architectures inspired
by the original MLP-Mixer concept from computer vision (Tolstikhin et al., 2021). Specifi-
cally, TSMixer (Yujie Liu et al., 2023) has emerged as a state-of-the-art approach for long-
horizon forecasting. TSMixer uses fully-connectedMLP layers for both tokenmixing (across
time steps) and channel mixing (across variables), eliminating attention mechanisms en-
tirely and thus achieving linear computational complexity (Td). Empirical evidence demon-
strates that TSMixer can outperform transformermodels for very long horizons, largely due
to its favorable inductive bias for temporal extrapolation (Yujie Liu et al., 2023).

Limitations of Mixer-based Models. Despite their computational advantages, mixer-
based models also have limitations. By foregoing attention entirely, they may fail to ade-
quately capture intricate, non-local temporal dependencies or complex cross-variable inter-
actions, especially in chaotic or highly nonlinear scenarios. This trade-off can potentially
reduce predictive performance in tasks demanding richer contextual modeling or deeper
representations of temporal dynamics.

Summary of Trade-offs. In summary, transformer architectures provide powerfulmech-
anisms for capturing long-range dependencies in time series, yet face significant challenges
related to computational complexity, training instability, and limited performance in ultra-
long forecasting horizons. Mixer-based models offer attractive alternatives with linear
computational complexity and better inductive biases for extrapolation, though they may
struggle with complex dependency modeling. Future advances in time series forecasting
could benefit from combining the efficiency of mixers with the expressive power and opti-
mized training strategies of transformers.

Hybrid and Advanced Architectures. Hybrid models that combine CNNs, RNNs, and
Transformers exploit complementary strengths of different neural architectures to achieve
superior forecasting performance. For instance, N-BEATS (Oreshkin et al., 2020) employs
fully connected neural networks organized into specialized blocks, using a hierarchical
structure to iteratively decompose time series into interpretable trend and seasonal com-
ponents, achieving competitive performance on long-horizon forecasting tasks. Hybrid
CNN-RNN models such as LSTNet (Guokun Lai et al., 2018a) integrate convolutional lay-
ers, which effectively capture local short-term patterns, with recurrent units for modeling
longer-term temporal dependencies. Additionally, Graph Neural Networks (GNNs) have
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emerged as powerful alternatives, particularly for multivariate forecasting tasks, by ex-
plicitly leveraging inter-channel correlations structured as graphs (Z. Wu, S. Pan, Long,
Jiang, Chang, et al., 2020). While advanced deep learning models can achieve strong per-
formance, they typically require significant computational resources and careful hyper-
parameter tuning. For smaller, stable, or resource-constrained forecasting tasks, simpler
statistical models or tree-based ensembles may be more suitable.

2.3.7 Benchmark Datasets

Standardized benchmark datasets are key for evaluating time series forecasting models
under realistic conditions. These datasets vary in terms of length, frequency, domain, and
complexity, influencing the suitability of different forecastingmethods. Below, we describe
key datasets and benchmarks commonly used in the forecasting literature.

M-Competitions. The M-Competitions have significantly contributed in advancing the
state-of-the-art in forecasting by systematically comparing statistical, machine learning,
and hybrid approaches on large-scale real-world datasets. These competitions include:

• M3 (Makridakis & Hibon, 2000): 3,003 time series covering microeconomic, macroe-
conomic, demographic, and industry-related data, with forecasting horizons ranging
from 6 to 18 steps.

• M4 (Makridakis, Spiliotis, et al., 2018): 100,000 time series from a variety of domains
(finance, demographics, energy, etc.), spanning different frequencies (hourly, daily,
weekly, monthly, quarterly, yearly).

• M5 (Makridakis, Spiliotis, et al., 2020): Forecasting product sales at Walmart, with
hierarchical demand structures and external factors such as promotions and price
elasticity.

These competitions have highlighted the strengths of hybrid models combining statistical
and machine learning approaches, as well as the importance of probabilistic forecasting.

MonashTimeSeries ForecastingArchive. TheMonash Time Series Forecasting Repos-
itory (Ruwan Godahewa et al., 2021) is one of the most comprehensive collections of pub-
licly available forecasting datasets. It includes:

• Tourism (Athanasopoulos et al., 2011): 1,311 time series related to Australian tourism,
with monthly, quarterly, and yearly granularities.

• Weather (Ruwan Godahewa et al., 2021): Meteorological records across different
countries, covering variables such as temperature, precipitation, and wind speed.
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• Traffic (R. Yu et al., 2017): Road traffic sensor data collected at different locations,
typically sampled at 15-minute or hourly intervals.

• Electricity (Dua & Graff, 2017): Records of power consumption at multiple client
sites, often used to evaluate energy load forecasting models.

UCI and UEA Time Series Archives. The UCI Machine Learning Repository (Dua &
Graff, 2017) and the UCR/UEA Time Series Classification Archive (Bagnall, Lines, et al.,
2017; Dau et al., 2019) are primarily designed for time series classification but have also
been adapted for forecasting tasks. They include datasets such as:

• StarLightCurves (Dau et al., 2019): Light intensity variations from astronomical
observations.

• Handwriting andMotionCapture (Bagnall, Lines, et al., 2017): Time series derived
from accelerometer and gyroscope data, useful for human activity recognition.

These datasets are often short, unlike forecasting datasets which typically span thousands
of points.

Competitions and Industry Benchmarks. Several forecasting challenges have been
launched by major tech companies and research communities:

• Kaggle Web Traffic Forecasting (Google, 2017): Time series of daily web traffic to
Wikipedia pages, with thousands of noisy, sparse, and seasonal series.

• AmazonDemand Forecasting Challenge (Salinas et al., 2020a): Forecasting prod-
uct demand at different aggregation levels, using historical sales datawith exogenous
variables.

• Walmart Sales Forecasting (Makridakis, Spiliotis, et al., 2020): Retail demand fore-
casting across thousands of stores and SKUs, incorporating promotions and holidays.

Dataset Characteristics andChallenges. The datasets used in forecasting vary widely
in structure and characteristics:

• Length: Forecasting datasets often contain much longer time series (up to decades
of historical data) compared to time series classification datasets, which typically
have a few hundred observations.

• Frequency: Some datasets use high-frequency data (e.g., electricity, traffic), while
others operate at much coarser time scales (e.g., yearly macroeconomic indicators).

• Domain Shift: Many forecasting datasets exhibit domain shifts between training
and test sets due to changing economic, seasonal, or external factors.
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Dataset # Time Series Length Frequency

M3 3,003 Varies Monthly, Quarterly, Yearly
M4 100,000 Varies Hourly to Yearly
M5 42,840 ∼2,000 Daily
Tourism 1,311 Varies Monthly, Quarterly, Yearly
Traffic 17,000+ 15k+ 15-min, Hourly
Electricity 3,700+ 26,304 Hourly
Wikipedia Web Traffic 145,000 ∼550 Daily
Amazon Demand Forecast 10,000+ 2,000+ Daily

Table 2.1: Comparison of commonly used forecasting datasets in terms of size, length, and
frequency.

2.3.8 Evaluation Metrics for TIme Series Forecasting

The evaluation of forecasting models depends on carefully chosen error metrics, which
must account for aspects such as scale dependence, sensitivity to outliers, interpretability,
and applicability to probabilistic forecasts. Below, we present commonly used metrics,
along with their strengths and weaknesses.

Magnitude-Dependent Metrics. These metrics evaluate absolute errors and are sensi-
tive to the scale of the target variable.

• Mean Absolute Error (MAE): Measures the average absolute difference between
predictions and actual values:

MAE =
1

N

N∑
i=1

|ŷi − yi | .

Easy to interpret (same unit as the target) and less sensitive to large errors compared
to squared-error metrics, but penalizes over- and underestimates equally, which may
not be suitable for all applications. It is still somewhat affected by outliers, though
less so than RMSE.

• Mean Squared Error (MSE): Penalizes larger errors more strongly due to the squar-
ing term:

MSE =
1

N

N∑
i=1

(ŷi − yi)2.

Helpful when large deviations need to be heavily penalized, and it is differentiable,
which aids model optimization. However, it is more sensitive to outliers than MAE.
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Scale-Independent Metrics. These metrics are useful when comparing models across
datasets with different scales.

• Mean Absolute Percentage Error (MAPE): Measures the error as a percentage of
the actual value:

MAPE =
1

N

N∑
i=1

|ŷi − yi |
|yi |

× 100.

Expresses errors in percentage, making it easier to compare across different datasets
and well-suited to fields like finance. However, it becomes unstable when target
values are close to zero and can disproportionately penalize small denominators.

• Symmetric Mean Absolute Percentage Error (sMAPE): A variant designed to
mitigate issues with small values:

sMAPE =
1

N

N∑
i=1

|ŷi − yi |
1
2
(|yi |+ |ŷi |)

× 100.

Partially addresses the zero-value problem by balancing over- and underestimates,
yet it remains sensitive to very small denominators and can behave unintuitively
when both yi and ŷi are very low.

Probabilistic Forecasting Metrics. For models that produce probability distributions
rather than point estimates, specific metrics are required.

• Continuous Ranked Probability Score (CRPS): Evaluates the accuracy of the full
predictive distribution, a widely adopted metric in probabilistic forecasting:

CRPS(F, y) =
∫ +∞
−∞

(
F (z)− I{y ≤ z}

)2
dz,

where F (z) is the cumulative distribution function of the forecast and ⊮{y ≤ z} is
the indicator function of the observation y . CRPS is particularly advantageous over
quantile loss as it does not require computing multiple quantiles to form prediction
intervals.

Choosing the Right Metric. The appropriate metric depends on the specific needs of
the forecasting task. For scenarios requiring clear interpretability, MAE is advantageous
because it shares the same units as the target. When large deviations need to be heavily
penalized, RMSE is preferable, although it can overemphasize outliers. MAPE and sMAPE
are well-suited for comparisons across different datasets but must be handled carefully
when target values approach zero. Overall, multiple metrics are often used together to get
a comprehensive evaluation of model performance.
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2.3.9 State of the Art in Time Series Forecasting

Recent advances in time series forecasting have been driven by deep learning models, par-
ticularly transformer-based architectures. While these models outperform classical ap-
proaches on short to medium forecasting horizons, they exhibit performance degradation
for long-term forecasting. This section analyzes key trends, empirical findings, and limita-
tions of state-of-the-art methods.

Short-Term vs. Long-Term Forecasting: A Performance Gap. The forecasting hori-
zon H is a key factor in model performance. Empirical studies (Zeng, Shiyang Li, et al.,
2023; H. Wu et al., 2021) indicate a clear divide:

• Short-term forecasting (H < 96): Transformer-based models achieve superior
accuracy by capturing non-linear temporal dependencies (Yuqi Nie et al., 2022; Yong
Liu et al., 2024).

• Long-term forecasting (H ≥ 96): Linear models surpass deep learning models.
Their simpler architectures reduce overfitting, an issue in Transformer-based fore-
casting (Zeng, Shiyang Li, et al., 2023; Christopher Challu et al., 2022).

Benchmarking Performance on StandardDatasets. To systematically compare fore-
casting models, research relies on standardized benchmarks:

Dataset # Channels Frequency

ETTh1 / ETTh2 7 1 hour
ETTm1 / ETTm2 7 15 min
Traffic 862 1 hour
Electricity 321 1 hour
Weather 21 10 min
Exchange-Rate 8 1 day

Table 2.2: Common benchmarks for evaluating time series forecasting models.

We observe that a notable shift between the training and test distributions affects all
models. Deep learning methods, however, prove generally more sensitive to previously
unseen patterns and unexpected variations in the data.

Current Research Challenges and OpenQuestions. Current research in forecasting
continues to face several unresolved challenges. First, scalability is a significant concern:
self-attention can exhibit quadratic complexity in sequence length, resulting in high com-
putational costs for high-dimensional multivariate series (H. Zhou et al., 2021). Second,
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while traditional statistical models present clear and interpretable parameters, deep learn-
ing approaches often remain opaque, necessitating post-hoc methods to explain model
decisions. Finally, domain adaptation remains a challenge, since real-world distribution
shifts often preventmodels from generalizing effectively. Potential solutions include hybrid
architectures combining statistical decomposition and deep feature extraction, as well as
memory-efficient self-attention mechanisms for long-term forecasting (H. Wu et al., 2021).

2.3.10 Conclusion

Although recent studies highlight good outcomes for transformer-based models in short-
term prediction, a key limitation emerges when forecasting horizons grow beyond H ≥
96. In these scenarios, linear methods continue to lead the field. Moving forward, three
priorities stand out: first, boosting transformers’ efficiency to reduce high computational
overhead; second, strengthening their capacity to adapt and maintain robust performance
under domain shifts; and finally, understanding precisely why transformers—despite their
success in NLP and Computer Vision—struggle to maintain their edge for long-horizon
forecasting.

2.4 Foundation Models & Learning Representations

2.4.1 Connection with the thesis

Foundation models have achieved remarkable success across NLP and computer vision
by learning powerful and generalizable representations from massive datasets. However,
directly adapting these large-scale architectures to multivariate time series remains chal-
lenging due to computational resource constraints and data limitations. This thesis con-
tributes to the emerging effort to leverage foundation models for time series through an
innovative adaptation approach introduced in Chapter 5. Unlike classical foundation mod-
els—which often focus on extensive fine-tuning—we significantly compress latent repre-
sentations, achieving near-original performance with drastically reduced complexity. This
approach diverges from traditional foundation model methodologies reviewed here, as we
explicitly address the bottleneck of computational feasibility in multivariate time series
classification tasks, making powerful pre-trained representations accessible for broader
practical use.

2.4.2 Introduction

Foundation models have had a transformative effect on numerous fields, most notably in
computer vision (K. He et al., 2015; Dosovitskiy et al., 2021a) and NLP (Joshua Achiam et al.,
2023; Touvron, Lavril, Izacard, Martinet, Lachaux, Lacroix, Rozière, Goyal, Hambro, Azhar,
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et al., 2023a). By pre-training on large datasets, these models capture versatile representa-
tions that reduce the demand for extensive labeled data in downstream tasks (Bommasani
et al., 2021). Building on this success, time series foundation models (TSFMs) have recently
emerged, harnessing unstructured time series at scale to learn encoders transferable to
forecasting, classification, imputation, and anomaly detection (Rasul, Anikait Ashok, et al.,
2023; Das et al., 2024; G. Woo et al., 2024b; Yipeng Wang et al., 2024; T. Zhou, PeiSong Niu,
et al., 2023; Goswami et al., 2024). Although these encoders are promising, a key challenge
lies in efficiently modeling multivariate dependencies while minimizing running time and
memory overhead.

2.4.3 Problem Setup

Let X = {xt}Tt=1 be a time series with d channels, where each observation xt ∈ Rd . A time
series foundation model (TSFM) is an encoder

FΨ : RT×d −→ Rq

parametrized byΨ. It projects the time series data into a latent space of dimension q. Dur-
ing a pre-training phase, FΨ is trained on an unlabeled datasetX0 to learn rich, transferable
representations that generalize well across diverse tasks. Once FΨ is pre-trained, we adapt
it to a downstream task via a fine-tuning stage, typically using a labeled dataset {(X,Y)}.
Concretely, we introduce a task-specific head

hΦ : Rq −→ RK

parametrized by Φ, where K is the dimension required by the task. For example, in time
series classification with K classes, hΦ outputs a vector of logits in RK . We thus compose
the two components into a final model hΦ ◦ FΨ.

Zero Shot Transfer. We freeze all parameters of the encoder FΨ (i.e.,Ψ is not updated)
and also freeze the task head hΦ that was was part of the original pre-training. Zero-shot
typically implies no further adaptation of the foundation model weights, thus reusing the
pre-trained features directly.

Fine-Tuning Strategies. Depending on how we train or freeze the parameters Ψ and
Φ, we distinguish three common scenarios:

• Head-only Fine-Tuning: We freeze the encoder parametersΨ but learn a new head
hΦ for the downstream task by minimizing a suitable loss for the considered down-
stream task. This allows us to keep the pre-trained representations intact while
adapting the final output layer to the specific classes or regression targets of the
new task.
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• Full Fine-Tuning: Weupdate bothΨ andΦ on the downstreamdataset. Concretely,
we minimize a loss L(hΦ(FΨ(X)),Y) by backpropagating through all layers of the
TSFM and the task head. This approach can yield higher accuracy but may require
more data and careful hyperparameter tuning to avoid catastrophic forgetting or
overfitting.

Figure 2.9 summarizes these three strategies in a flow diagram.

Unlabeled Data
X0

(Pre-training)

FΨ

(Pre-trained Encoder)

hΦ

(Pre-trained Head)

Downstream Task

Zero-shot:
Use FΨ and
hΦ as-is

Head-only
Fine-tuning:
Freeze FΨ,
update hΦ

Full Fine-tuning:
Update both
FΨ and hΦ

Figure 2.9: Flow diagram of different strategies for a time series foundation model. In the
zero-shot approach, the pre-trained encoder FΨ and head hΦ are used without modifica-
tion. In head-only fine-tuning, only the head hΦ is updated while FΨ remains frozen. In
full fine-tuning, both FΨ and hΦ are fine-tuned on the downstream task.

In summary, a TSFM provides a flexible pipeline for downstream tasks. We first learn a
powerful encoder FΨ from unlabeled data, then compose it with a task head hΦ for classifi-
cation, forecasting, anomaly detection, or any other objective. Depending on resource con-
straints and data availability, we can choose a zero-shot approach (no additional training),
head-only fine-tuning (lightweight adaptation), or full fine-tuning (maximum adaptation).
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Pre-Training Strategies. Pre-training methods for time series representation learning
aim to extract robust and generalizable features. Broadly, these methods can be catego-
rized into two main approaches:

• Contrastive Learning: These methods train encoders to maximize similarity be-
tween augmented views of the same time series, while minimizing similarity across
distinct series. By encouraging invariance to perturbations, contrastivemethods pro-
duce representations resilient to noise and domain shifts. Prominent examples in-
clude TS2Vec (Yue et al., 2022) and Mantis (Feofanov, S. Wen, et al., 2024).

• Masked and Reconstruction-Based Approaches: These methods train encoders
to reconstruct masked, missing, or future values from partial or corrupted inputs,
implicitly capturing temporal structure and dynamics. Inspired by masked language
modeling in NLP, models such as TNC (Tonekaboni et al., 2021), MOIRAI (G. Woo et
al., 2024a), and MOMENT (Goswami et al., 2024) leverage this paradigm to improve
contextual representation and forecasting performance.

Each method has advantages: contrastive learning is effective for classification, while
masked modeling is suited for imputation and anomaly detection (T. Zhou, PeiSong Niu,
et al., 2023).

2.4.4 Multivariate Time Series Challenges

In practice, time series data often consist of multiple channels, and the number of channels
can vary greatly across different applications. This variability introduces several significant
challenges for time series foundation models:

• High Memory Consumption and Increased Running Time: Many foundation
models are computationally intensive. When processing all channels as a single in-
put, the memory footprint becomes excessively high, especially with hundreds or
thousands of channels. Alternatively, processing channels sequentially to reduce
memory usage leads to a significant increase in running time.

• Redundant or Correlated Channels: In many multivariate time series, several
channels are highly correlated or even redundant. Treating channels independently
fails to exploit these interdependencies, leading to inefficient representations and
a potential loss of valuable information. This redundancy can further exacerbate
computational and memory issues.

• Scalability Issues: As the number of channels grows, the computational cost of
processing each channel separately scales linearly (or worse). Without proper adap-
tation, applying a foundation model in a multivariate setting can result in prohibitive
training times and memory requirements.
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A promising solution to these difficulties is the use of a channel-level adapter, which
compresses the original high-dimensional input into a more compact representation be-
fore passing it to the foundation model. By combining correlated channels, this adapter
preserves the temporal structure, reduces the memory and runtime burden, and aligns the
input with the model’s computational constraints. Despite these advances, handling large-
scale multivariate time series efficiently remains a challenge, particularly for memory-
constrained environments.

2.4.5 Pre-Training Data and Benchmarks

A wide range of publicly available datasets has been curated to benchmark the perfor-
mance of time series foundation models across diverse tasks, forecasting horizons, and
domains. Below, we briefly summarize four major collections, along with their respective
references.

Long-Horizon Forecasting Datasets (Informer). As introduced by (H. Zhou et al.,
2021), the Informer suite of long-horizon forecasting datasets is composed of nine distinct
time series that span various temporal resolutions and domains. This collection includes:

• ETT (Electricity Transformer Temperature): Available in hourly and minutely
subsets, designed to test the ability of models to capture fine-grained temporal dy-
namics (H. Zhou et al., 2021).

• Electricity: Originating from Trindade 2015, this dataset tracks power consumption
across multiple clients.

• Traffic: Released by the California Department of Transportation (California De-
partment of Transportation, 2024), capturing vehicle flow rates on road segments.

• Weather: Provided by the Max Planck Institute for Biogeochemistry (Max Planck
Institute for Biogeochemistry, 2024), containing meteorological measurements such
as temperature, humidity, and wind speed.

• ILI (Influenza-like Illness): Published by the Centers for Disease Control and Pre-
vention (Centers for Disease Control and Prevention, 2024), used to monitor and
forecast flu trends.

• Exchange-rate: Introduced by (Guokun Lai et al., 2018b), focuses on multivariate
exchange rate movements.

These datasets have been widely adopted to evaluate long-horizon forecasting perfor-
mance (X. Wu et al., 2023; L. Nie et al., 2023; C. Challu et al., 2023). Interestingly, some
recent studies report that foundation models based on transformers may offer superior
performance on longer horizons, challenging earlier beliefs that simpler linear baselines
dominate at scale.
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Monash Time Series Forecasting Archive. Proposed by R. Godahewa et al. 2021, this
archive consists of 58 publicly available short-horizon forecasting datasets, collectively con-
taining over 100K time series. The archive encompasses diverse domains (e.g., finance,
meteorology, health) and multiple temporal resolutions. Its broad coverage makes it an es-
sential benchmark for evaluating methods intended for short-range predictions, especially
those that emphasize operational decision-making (e.g., daily to weekly forecasts).

UCR/UEAClassification Archive. Time series classification remains a critical sub-task
within time series analysis. The UCR/UEA archive (Dau et al., 2019) comprises 159 datasets
spanning seven categories, such as image outlines, sensor readings, motion capture data,
spectrographs, ECG recordings, electric devices, and simulated data. These datasets vary
widely in both size and number of classes, enabling a comprehensive assessment of clas-
sification algorithms. They have served as a core benchmark for numerous classification
studies (Ismail Fawaz, Forestier, et al., 2019).

TSB-UAD Anomaly Detection Benchmark. A more recent contribution, TSB-UAD
(Paparrizos et al., 2022), provides 1980 univariate time series labeled with anomalies, drawn
from 18 different anomaly detection datasets proposed over the past decade. Covering
synthetic and real-world time series from sources such as human body signals, aerospace
telemetry, environmental data, and web servers, TSB-UAD has quickly become a standard
benchmark for anomaly detection research. Its extensive diversity in data characteristics
(e.g., frequency, seasonality, trend) enables a rigorous evaluation of model robustness and
generalization to novel anomaly types.

2.4.6 General Issues

Data Preprocessing. An essential prerequisite is rigorous data preprocessing: aligning
series lengths, normalizing all signals, and ensuring consistent sets of variables across sam-
ples.

TaskMismatch. The concept of task mismatch arises from transfer learning. For instance,
if a model is pre-trained on a classification objective, the features it learns may not be
optimal for forecasting tasks. This mismatch can lead to suboptimal performance (S. J.
Pan & Q. Yang, 2010).

In summary, while foundation models have the potential to excel on diverse down-
stream tasks—sometimes even outperformingmodels specifically designed for those tasks—they
require careful fine-tuning. Addressing issues like data preprocessing and task mismatch
is essential to achieving robust generalization.
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Figure 2.10: Adapted from the MOMENT paper (Goswami et al., 2024). A brief description
of the datasets that collectively form the Time Series Pile. Due to space constraints, the
authors only provide metadata for the subsets of the M3 and M4 datasets used in their
experiments, along with five classification and anomaly detection datasets. Detailed char-
acteristics for all short-horizon forecasting, classification, and anomaly detection datasets
in the Time Series Pile can be found in the official repository, as well as in the Monash
archive (R. Godahewa et al., 2021), the UCR/UEA classification archive (Dau et al., 2019),
and the TSB-UAD anomaly benchmark (Paparrizos et al., 2022).

2.4.7 Conclusions

TSFMs are an emerging research area that leverages large-scale pre-training to capture
rich, general-purpose representations. Models such as MOIRAI (G. Woo et al., 2024a)
demonstrate that, when fine-tuned properly, these models can outperform task-specific
architectures. However, challenges require the use of strategies to prevent overfitting and
loss of pre-trained knowledge. Future work should explore more robust fine-tuning strate-
gies and cross-task generalization methods.
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SAMformer: Unlocking the Potential of
Transformers in Time Series Forecasting
with Sharpness-Aware Minimization and
Channel-Wise Attention

Summary. Transformer-based architectures achieved breakthrough performance in nat-
ural language processing and computer vision, yet they remain inferior to simpler linear
baselines inmultivariate long-term forecasting. To better understand this phenomenon, we
start by studying a toy linear forecasting problem for which we show that transformers are
incapable of converging to their true solution despite their high expressive power. We fur-
ther identify the attention of transformers as being responsible for this low generalization
capacity. Building upon this insight, we propose a shallow lightweight transformer model
that successfully escapes bad local minima when optimized with sharpness-aware opti-
mization. We empirically demonstrate that this result extends to all commonly used real-
world multivariate time series datasets. In particular, SAMformer surpasses current state-
of-the-art methods and is on par with the biggest foundation model MOIRAI while having
significantly fewer parameters. The code is available at https://github.com/romilbert/samformer.

3.1 Introduction

Multivariate time series forecasting is a classical learning problem that consists of analyz-
ing time series to predict future trends based on historical information. In particular, long-
term forecasting is notoriously challenging due to feature correlations and long-term tem-
poral dependencies in time series. This learning problem is prevalent in those real-world
applications where observations are gathered sequentially, such as medical data (Čepulio-
nis & Lukoševičiūtė, 2016), electricity consumption (UCI, 2015), temperatures (Max Planck
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Figure 3.1: Illustration of our approach on synthetic data. Oracle is the optimal solution,
Transformer is a base transformer, σReparam is a Transformer with weight rescaling (Zhai
et al., 2023) and Transformer + SAM is Transformer trained with sharpness-aware mini-
mization. Transformer overfits, σReparam improves slightly but fails to reach Oracle while
Transformer+SAMgeneralizes perfectly. Thismotivates SAMformer, a shallow transformer
combining SAM and best practices in time series forecasting.

Institute, 2021), or stock prices (Sonkavde et al., 2023). A plethora of methods have been
developed for this task, from classical mathematical tools (Sorjamaa et al., 2007; R. Chen
& M. Tao, 2021) and statistical approaches like ARIMA (George Edward Pelham Box & G.
Jenkins, 1990; G. E. P. Box et al., 1974) to more recent deep learning ones (Casolaro et al.,
2023), including recurrent and convolutional neural networks (Rangapuram et al., 2018;
Salinas et al., 2020b; Fan et al., 2019; Guokun Lai et al., 2018c; Sen et al., 2019).

Recently, the transformer architecture (Vaswani et al., 2017) became ubiquitous in nat-
ural language processing (NLP) (Devlin et al., 2018; Radford et al., 2018; Touvron, Lavril,
Izacard, Martinet, Lachaux, Lacroix, Rozière, Goyal, Hambro, Azhar, et al., 2023b; OpenAI,
2023) and computer vision (Dosovitskiy et al., 2021b; Caron et al., 2021; Touvron, Cord, et
al., 2021), achieving breakthrough performance in both domains. Transformers are known
to be particularly efficient in dealing with sequential data, a property that naturally calls
for their application on time series. Unsurprisingly, many works attempted to propose time
series-specific transformer architectures to benefit from their capacity to capture tempo-
ral interactions (H. Zhou et al., 2021; H. Wu et al., 2021; T. Zhou, Ma, et al., 2022; Yuqi Nie
et al., 2023). However, the current state-of-the-art in multivariate time series forecasting is
achieved with a simplerMLP-basedmodel (S.-A. Chen et al., 2023), which significantly out-
performs transformer-based methods. Moreover, Zeng, M. Chen, et al. 2023 have recently
found that linear networks can be on par or better than transformers for the forecasting
task, questioning their practical utility. This curious finding serves as a starting point for
our work.

Limitation of current approaches. Recent works applying transformers to time series
data have mainly focused on either (i) efficient implementations reducing the quadratic
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cost of attention (Shiyang Li et al., 2019; S. Liu et al., 2022; Cirstea et al., 2022; Kitaev
et al., 2020; H. Zhou et al., 2021; H. Wu et al., 2021) or (ii) decomposing time series to
better capture the underlying patterns in them (H. Wu et al., 2021; T. Zhou, Ma, et al.,
2022). Surprisingly, none of these works have specifically addressed a well-known issue
of transformers related to their training instability, particularly present in the absence of
large-scale data (L. Liu et al., 2020; Dosovitskiy et al., 2021b).

Trainability of transformers. In computer vision and NLP, it has been found that at-
tention matrices can suffer from entropy or rank collapse (Dong et al., 2021). Then, several
approaches have been proposed to overcome these issues X. Chen et al., 2022; Zhai et al.,
2023. However, in the case of time series forecasting, open questions remain about how
transformer architectures can be trained effectively without a tendency to overfit. We
aim to show that by eliminating training instability, transformers can excel in multivariate
long-term forecasting, contrary to previous beliefs of their limitations.

Summary of our contributions. Our proposal puts forward the following contribu-
tions:

1. We show that even when the transformer architecture is tailored to solve a sim-
ple toy linear forecasting problem, it still generalizes poorly and converges to sharp
local minima. We further identify that attention is mainly responsible for this phe-
nomenon;

2. We propose a shallow transformer model, termed SAMformer, that incorporates the
best practices proposed in the research community including reversible instance nor-
malization (RevIN, T. Kim et al. 2021) and channel-wise attention H. Zhang et al.,
2022; Zamir et al., 2022 recently introduced in computer vision community. We
show that optimizing such a simple transformer with sharpness-aware minimiza-
tion (SAM) allows convergence to local minima with better generalization;

3. We empirically demonstrate the superiority of our approach on common multivari-
ate long-term forecasting datasets. SAMformer surpasses current state-of-the-art
methods and is on par with the biggest foundation model MOIRAI while having sig-
nificantly fewer parameters.

3.2 Proposed Approach

Notations. We represent scalar values with regular letters (e.g., parameter λ), vectors
with bold lowercase letters (e.g., vector x), andmatrices with bold capital letters (e.g., matrix
M). We denote byM⊤ the transpose ofM and likewise for vectors. The rank of a matrix
M is denoted by rank(M), and its Frobenius norm by ∥M∥F. We let ñ = min{n,m}, and
denote by ∥M∥∗ =

∑ñ
i=1 σi(M) the nuclear norm of M with σi(M) being its singular
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values, and by ∥M∥2 = σmax(M) its spectral norm. The identity matrix of size n × n is
denoted by In. The notationM ≽ 0 indicates thatM is positive semi-definite.

3.2.1 Problem Setup

We consider the multivariate long-term forecasting framework: given a D-dimensional
time series of length L (look-back window), arranged in a matrix X ∈ RD×L to facilitate
channel-wise attention, our objective is to predict its next H values (prediction horizon),
denoted by Y ∈ RD×H. We assume that we have access to a training set that consists of
N observations (X ,Y) = ({X(i)}Ni=0, {Y(i)}Ni=0), and denote by X(i)d ∈ R1×L (respectively
Y
(i)
d ∈ R1×H) the d-th feature of the i -th input (respectively target) time series. We aim to

train a predictor fω : RD×L → RD×H parameterized byω that minimizes the mean squared
error (MSE) on the training set:

Ltrain(ω) =
1

ND

N∑
i=0

∥Y(i) − fω(X(i))∥2F . (3.1)

3.2.2 Motivational Example

Recently, Zeng, M. Chen, et al. 2023 showed that transformers perform on par with, or
are worse than, simple linear neural networks trained to directly project the input to the
output. We use this observation as a starting point by considering the following generative
model for our toy regression problemmimicking a time series forecasting setup considered
later:

Y = XWtoy + ε. (3.2)

We let L=512, H=96, D=7 andWtoy ∈ RL×H, ε ∈ RD×H having random normal entries
and generate 15000 input-target pairs (X,Y) (10000 for train and 5000 for validation),
with X ∈ RD×L having random normal entries.

Given this generative model, we would like to develop a transformer architecture that
can efficiently solve the problem in Eq. (3.2) without unnecessary complexity. To achieve
this, we propose to simplify the usual transformer encoder by applying attention to X
and incorporating a residual connection that adds X to the attention’s output. Instead of
adding a feedforward block on top of this residual connection, we directly employ a linear
layer for output prediction. Formally, our model is defined as follows:

f (X) = [X+ A(X)XWVWO]W, (3.3)

withW ∈ RL×H,WV ∈ RL×dm ,WO ∈ Rdm×L and A(X) being the attention matrix of an
input sequence X ∈ RD×L defined as

A(X) = softmax

(
XWQW

⊤
KX

⊤
√
dm

)
∈ RD×D (3.4)
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where the softmax is row-wise,WQ ∈ RL×dm,WK ∈ RL×dm , and dm is the dimension of the
model. The softmax makes A(X) right stochastic, with each row describing a probability
distribution. To ease the notations, in contexts where it is unambiguous, we refer to the
attention matrix simply as A, omitting X.

We term this architecture Transformer and briefly comment on it. First, the attention
matrix is applied channel-wise, which simplifies the problem and reduces the risk of over-
parametrization, as the matrix W has the same shape as in Eq. (3.2) and the attention
matrix becomes much smaller due to L > D. In addition, channel-wise attention is more
relevant than temporal attention in this scenario, as data generation follows an i.i.d. pro-
cess according to Eq. (3.2). We formally establish the identifiability ofWtoy by our model
below. The detailed proof, including all supporting lemmas, is deferred to Appendix A.2.2.

Proposition 3.2.1 (Existence of optimal solutions). Assume WQ,WK,WV and WO

are fixed and let P = X + A(X)XWVWO ∈ RD×L. Then, there exists a matrixW ∈
RL×H such that PW = XWtoy if, and only if, rank([P XWtoy]) = rank(P) where
[P XWtoy] ∈ RD×(L+H) is a block matrix.

We now proceed to the proof of Proposition 3.2.1.

Proof. Applying Lemma A.2.2 with S = P, B = 0, C = XWtoy andW in the role of Y en-
sures that there existsW ∈ RL×H such thatPW = XWtoy if and only if rank([P XWtoy]) =

rank(P), which concludes the proof.

The assumption made above is verified if P is full rank and D < H, which is the case
in this toy experiment. Consequently, the optimization problem of fitting a transformer on
data generated with Eq. (3.2) theoretically admits infinitely many optimal classifiersW.

We would now like to identify the role of attention in solving the problem from Eq. (3.3).
To this end, we consider amodel, termed Random Transformer, where onlyW is optimized,
while self-attention weights WQ,WK,WV ,WO are fixed during training and initialized
following Glorot & Bengio 2010. This effectively makes the considered transformer act like
a linear model. Finally, we compare the local minima obtained by these two models after
their optimization using Adamwith the Oracle model that corresponds to the least squares
solution of Eq. (3.2).

We present the validation loss for both models in Figure 3.2. A first surprising finding
is that both transformers fail to recover Wtoy, highlighting that optimizing even such a
simple architecture with a favorable design exhibits a strong lack of generalization. When
fixing the self-attention matrices, the problem is alleviated to some extent, although Ran-
dom Transformer remains suboptimal. This observation remains consistent across various
optimizers (see Figure 3.18) and values of learning rate, suggesting that this phenomenon
is not attributable to suboptimal optimizer hyperparameters or the specific choice of the
optimizer. As there is only a 2% increase in the number of parameters between the Ran-
dom Transformer and the Transformer, it is not due to overfitting either. Hence, we deduce
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Figure 3.2: Poor generalization. Despite its simplicity, Transformer suffers from severe over-
fitting. Fixing the attention weights in Random Transformer improves the generalization,
hinting at the role of attention in preventing convergence to optimal local minima.

from Figure 3.1 that the poor generalization capabilities of Transformer are mostly due to
the trainability issues of the attention module.

3.2.3 Transformer’s Loss Landscape

Intuition. In the previous section, we concluded that the attention was at fault for the
poor generalization of Transformer observed above. To develop our intuition behind this
phenomenon, we plot in Figure 3.3 the attention matrices at different epochs of training.
We can see that the attention matrix is close to the identity matrix right after the very
first epoch and barely changes afterward, especially with the softmax amplifying the dif-
ferences in the matrix values. It shows the emergence of attention’s entropy collapse with
a full-rank attention matrix, which was identified in Zhai et al. 2023 as one of the reasons
behind the hardness of training transformers. This work also establishes a relationship
between entropy collapse and the sharpness of the transformers’ loss landscape, which
we confirm in Figure 3.4 (a similar behavior is obtained on real data in Figure 3.6. The
Transformer converges to a sharper minimum than the Random Transformer while hav-
ing a significantly lower entropy (the attention being fixed at initialization for the latter,
its entropy remains constant along training). These pathological patterns suggest that the
Transformer fails because of the entropy collapse and the sharpness of its training loss. In
the next paragraph, we investigate the existing solutions in the literature to alleviate those
issues.

Existing solutions. Recent studies have demonstrated that the loss landscape of trans-
formers is sharper compared to other residual architectures (X. Chen et al., 2022; Zhai et al.,
2023). This may explain training instability and subpar performance of transformers, espe-
cially when trained on small-scale datasets. The sharpness of transformers was observed
and quantified differently: while X. Chen et al. 2022 computes λmax, the largest eigenvalue
of the loss function’s Hessian, Zhai et al. 2023 gauges the entropy of the attention matrix to
demonstrate its collapse with high sharpness. Both these metrics are evaluated, and their
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Figure 3.3: Transformer’s loss landscape analysis for linear regression. The attention matri-
ces of Transformer quickly become fixed to the identity from the very first epoch, indicating
a lack of dynamic adaptation during training.
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Figure 3.4: Analysis of the loss landscape at the end of training. (Left) Transformer con-
verges to amuch sharperminimum than Transformer+SAM, as evidenced by a significantly
larger λmax (approximately 104 times larger), whereas the Random Transformer exhibits a
smoother loss landscape. (Right) Transformer experiences entropy collapse during train-
ing, further confirming the high sharpness of its loss landscape.

results are illustrated in Figure 3.4. This visualization confirms our hypothesis, revealing
both detrimental phenomena at once. On the one hand, the sharpness of the transformer
with fixed attention is orders of magnitude lower than the sharpness of the transformer
that converges to the identity attention matrix. On the other hand, the entropy of the
transformer’s attention matrix is dropping sharply along the epochs when compared to
the initialization.

To identify an appropriate solution allowing a better generalization performance and
training stability, we explore both remedies proposed by X. Chen et al. 2022 and Zhai
et al. 2023. The first approach involves utilizing the recently proposed sharpness-aware
minimization framework (Foret et al., 2021) which replaces the training objective Ltrain of
Eq. (3.1) by

LSAM
train(ω) = max∥ε∥<ρ

Ltrain(ω + ε) ,

where ρ > 0 is an hyper-parameter (see Remark A.1.1 of Appendix A.1), and ω are the
parameters of the model. More details on SAM can be found in Appendix A.1.2. The second
approach involves reparameterizing all weight matrices with spectral normalization and an
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additional learned scalar, a technique termed σReparam by Zhai et al. 2023. More formally,
we replace each weight matrixW as follows

Ŵ =
γ

∥W∥2
W, (3.5)

where γ ∈ R is a learnable parameter initialized at 1.

The results depicted in Figure 3.1 highlight our transformer’s successful convergence
to the desired solution. Surprisingly, this is only achieved with SAM, as σReparam doesn’t
manage to approach the optimal performance despite maximizing the entropy of the at-
tention matrix. In addition, one can observe in Figure 3.4 that the sharpness with SAM is
several orders of magnitude lower than the Transformer while the entropy of the attention
obtained with SAM remains close to that of a base Transformer with a slight increase in
the later stages of the training. It suggests that entropy collapse as introduced in Zhai
et al. 2023 is benign in this scenario.

To better understand the failure of σReparam, it can be useful to recall how Eq. (3.5) was
derived. Zhai et al. 2023 departed from a tight lower bound on the attention entropy and
showed that it increases exponentially fast when ∥WQW

⊤
K∥2 is minimized (Zhai et al., 2023,

see Theorem 3.1). Eq. (3.5) was proposed as a simple way to minimize this quantity. In the
case of channel-wise attention, however, it can be shown that this has a detrimental effect
on the rank of the attention matrix, which would consequently exclude certain features
from being considered by the attention mechanism. We formalize this intuition in the
following Proposition 3.2.2, where we consider the nuclear norm, a sum of the singular
values, as a smooth proxy of the algebraic rank, which is a common practice (Daneshmand
et al., 2020; Dong et al., 2021). The detailed proof, including all supporting lemmas, is
deferred to Appendix A.2.3.

Proposition 3.2.2 (Upper bound on the nuclear norm). Let X ∈ RD×L be an input
sequence. AssumingWQW

⊤
K =WKW

⊤
Q ≽ 0, we have

∥XWQW
⊤
KX

⊤∥∗ ≤ ∥WQW
⊤
K∥2∥X∥2F.

Proof. Let M := XWQW
⊤
KX

⊤. Since WQW
⊤
K is symmetric and positive semi-definite

(PSD), M is also PSD by Lemma A.2.6. For PSD matrices, the nuclear norm equals the
trace (Lemma A.2.5), hence:

∥M∥∗ = Tr(M) = Tr
(
XWQW

⊤
KX

⊤) = Tr(X⊤XWQW
⊤
K

)
, (3.6)

where we used the cyclic property of the trace.

We then apply the trace inequality from Lemma A.2.3:

Tr
(
X⊤XWQW

⊤
K

)
≤ λmax

(
WQW

⊤
K

)
Tr
(
X⊤X

)
. (3.7)
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SinceWQW
⊤
K is PSD, its largest eigenvalue equals its spectral norm by Lemma A.2.5:

λmax
(
WQW

⊤
K

)
= ∥WQW

⊤
K∥2. (3.8)

Additionally, by definition of the Frobenius norm, we have:

Tr
(
X⊤X

)
= ∥X∥2F. (3.9)

Combining these results yields the desired inequality:

∥XWQW
⊤
KX

⊤∥∗ ≤ ∥WQW
⊤
K∥2 ∥X∥2F, (3.10)

which concludes the proof.

Note that the assumption made above holds whenWQ=WK and has been previously
studied by H. Kim et al. 2021. The theorem confirms that employing σReparam to decrease
∥WQW

⊤
K∥2 reduces the nuclear norm of the numerator of attention matrix defined by

Eq. (3.4). While the direct link between matrix rank and this nuclear norm does not always
hold, nuclear norm regularization is commonly used to encourage a low-rank structure in
compressed sensing (Recht et al., 2010; Recht, 2011; Candès & Recht, 2012).

Although Proposition 3.2.2 cannot be directly applied to the attention matrix A(X), we
point out that in the extreme casewhenσReparam leads to the attention scoresXWQW

⊤
KX

⊤

to be rank-1 with identical rows as studied in (Anagnostidis et al., 2022), that the attention
matrix stays rank-1 after application of the row-wise softmax. Thus, σReparam may in-
duce a collapse of the attention rank that we empirically observe in terms of nuclear norm
in Figure 3.11. With these findings, we present a new simple transformer model with high
performance and training stability for multivariate time series forecasting.

3.2.4 SAMformer: Putting It All Together

The proposed SAMformer is based on Eq. (3.3) with two important modifications. First, we
equip it with Reversible Instance Normalization (RevIN, T. Kim et al. 2021) applied to X as
this technique was shown to be efficient in handling the shift between the training and
testing data in time series. Second, as suggested by our explorations above, we optimize
the model with SAM to make it converge to flatter local minima. Overall, this gives the
shallow transformer model with one encoder in Figure 3.5.

We highlight that SAMformer keeps the channel-wise attention represented by a ma-
trixD×D as in Eq. (3.3), contrary to spatial (or temporal) attention given by L×Lmatrix
used in other models. This brings two important benefits: (i) it ensures feature permu-
tation invariance, eliminating the need for positional encoding, commonly preceding the
attention layer; (ii) it leads to a reduced time and memory complexity as D ≤ L in most
of the real-world datasets. Our channel-wise attention examines the average impact of
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Figure 3.5: SAMformer Architecture
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Figure 3.6: Sharpness of SAMformer and Transformer. This figure demonstrates that SAM-
former exhibits a smoother loss landscape compared to Transformer.

each feature on the others throughout all timesteps. An ablation study, detailed in Sec-
tion 3.3.4, validates the effectiveness of this implementation. We are now ready to evaluate
SAMformer on common multivariate time series forecasting benchmarks, demonstrating
its superior performance.

3.3 Experiments

In this section, we empirically demonstrate the quantitative and qualitative superiority of
SAMformer in multivariate long-term time series forecasting on common benchmarks. We
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(a) Prediction horizon H = 96.

Transformer SAMformer
0.38

0.49

0.59

Te
st

 M
SE

ETTh1 

Transformer SAMformer
0.32

0.38

0.44
ETTh2 

Transformer SAMformer
0.33

0.38

0.44
ETTm1 

Transformer SAMformer
0.22

0.26

0.3
ETTm2 

Transformer SAMformer
0.15

0.22

0.29

Te
st

 M
SE

Electricity 

Transformer SAMformer
0.21

0.32

0.42
Exchange 

Transformer SAMformer
0.4

0.46

0.53
Traffic 

Transformer SAMformer
0.23

0.26

0.29
Weather 

Transformer SAMformer

(b) Prediction horizon H = 192.

Figure 3.7: Test Mean Squared error on all datasets for a prediction horizonH ∈ {96, 192}
across five different seed values for Transformer and SAMformer. This plot reveals a sig-
nificant variance for the Transformer, as opposed to the minimal variance of SAMformer,
showing the high impact of weight initialization on Transformer and the high resilience of
SAMformer.

show that SAMformer surpasses the current multivariate state-of-the-art TSMixer (S.-A.
Chen et al., 2023) by 14.33% while having ∼ 4 times fewer parameters.

Architecture. We follow S.-A. Chen et al. 2023; Yuqi Nie et al. 2023, and to ensure a fair
comparison of baselines, we apply the reversible instance normalization (RevIN) of T. Kim
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Figure 3.8: TestMean Squared error on all datasets for a prediction horizonH ∈ {336, 720}
across five different seed values for Transformer and SAMformer. This plot reveals a sig-
nificant variance for the Transformer, as opposed to the minimal variance of SAMformer,
showing the high impact of weight initialization on Transformer and the high resilience of
SAMformer.

et al. 2021 (see Appendix A.1.1 for more details). The network used in SAMformer and
Transformer is a simplified one-layer transformer with one head of attention and without
feed-forward. Its neural network function follows Eq. (3.3), while RevIN normalization and
denormalization are applied respectively before and after the neural network function; see
Figure 3.5. We display the inference step of SAMformer in detail in Algorithm 1. For the
sake of clarity, we describe the application of the neural network function sequentially
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on each element of the batches, but in practice, the operations are parallelized and per-
formed batch per batch. For SAMformer and Transformer, the dimension of the model is
dm = 16 and remains the same in all our experiments. For TSMixer, we used the official
implementation that can be found here.

Algorithm 1: Architecture of the network used in SAMformer and Transformer
Parameters: Batch size bs , input length L, prediction horizon H, dimension of
the model dm.

Network trainable parameters:WQ ∈ RL×dm,WK ∈ RL×dm ,WV ∈ RL×dm ,
WO ∈ Rdm×L,W ∈ RL×H.

RevIN trainable parameters: β, γ.
Input: Batch of bs input sequences X ∈ RD×L arranged in a tensor Bin of
dimension bs × L×D.

RevIN normalization: X← X̃ following Eq. (A.2). The output is a tensor B̃in of
dimension bs × L×D.

Transposition of the batch: B̃in is reshaped in dimension bs ×D × L.
Applying the neural network of Eq. (3.3):
for each X̃ ∈ B̃in do

1. Attention layer

Rescale the input with the attention matrix (Eq. (3.4)).
The output A(X̃)X̃WVWO is of dimension D × L
2. Skip connection

Sum the input X̃ and the output of the attention layer.
The output X̃+ A(X̃)X̃WVWO is of dimension D × L.
3. Linear layer

Apply a linear layer on the output of the skip connection.
The output Ỹ =

[
X̃+ A(X̃)X̃WVWO

]
W is of dimension D ×H.

Unnormalized predictions are arranged in a tensor B̃out of dimension
bs ×D ×H.

end

Transposition of the batch: B̃out is reshaped in dimension bs ×H ×D.
RevIN denormalization: Ỹ ← Ŷ following Eq. (A.3).
Output: Batch of bs prediction sequences Ŷ ∈ RD×H arranged in a tensor B̂out of
dimension bs ×H ×D.

Training parameters. For all of our experiments, we train our baselines (SAMformer,
Transformer, TSMixerwith SAM, TSMixerwithout SAM)with the Adamoptimizer (Kingma
& Ba, 2015), a batch size of 32, a cosine annealing scheduler (Loshchilov & Hutter, 2017)
and the learning rates summarized in Table 3.1. For SAMformer and TSMixer trained
with SAM, the values of neighborhood size ρ∗ used are reported in Table 3.2. The train-
ing/validation/test split is 12/4/4 months on the ETT datasets and 70%/20%/10% on
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the other datasets. We use a look-back window L = 512 and use a sliding window
with stride 1 to create the sequences. The training loss is the MSE on the multivariate
time series (Eq. (3.1)). Training is performed during 300 epochs and we use early stop-
ping with a patience of 5 epochs. For each dataset, baselines, and prediction horizon
H ∈ {96, 192, 336, 720}, each experiment is run 5 times with different seeds, and we
display the average and the standard deviation of the test MSE and MAE over the 5 trials.

Table 3.1: Learning rates used in our experiments. ETT designs ETTh1, ETTh2, ETTm1 and
ETTm2.

Dataset ETT Electricity Exchange Traffic Weather

Learning rate 0.001 0.0001 0.001 0.0001 0.0001

Datasets. We conduct our experiments on 8 publicly available real-world multivariate
time series datasets, widely adopted for evaluating long-term forecasting methods (H. Wu
et al., 2021; S.-A. Chen et al., 2023; Yuqi Nie et al., 2023; Zeng, M. Chen, et al., 2023). The four
Electricity Transformer Temperature datasets ETTh1, ETTh2, ETTm1, and ETTm2 (H. Zhou
et al., 2021), collectively referred to as ETT whenever possible, contain measurements from
electricity transformers collected between July 2016 and July 2018. Electricity (UCI, 2015)
records electricity consumption of 321 clients from 2012 to 2014. Exchange (Guan Lai et al.,
2018) includes daily exchange rates between 8 countries from 1990 to 2016. Traffic (Cali-
fornia Department of Transportation, 2021) consists of road occupancy rates collected by
862 sensors from January 2015 to December 2016. Lastly, Weather (Max Planck Institute,
2021) gathers meteorological data from 21 weather indicators throughout 2020. Note that
Electricity, Traffic, andWeather are large-scale datasets. All time series are segmented into
windows of input length L = 512 with prediction horizons H ∈ {96, 192, 336, 720} and
a stride of 1, meaning each subsequent window shifts by one step. The ETT datasets are
available here, and the other four datasets can be found here. Table 3.3 summarizes the
main characteristics of these datasets.

Baselines. We compare SAMformer with the previously introduced Transformer and
TSMixer (S.-A. Chen et al., 2023), a state-of-the-art baseline built entirely onMLPs. While S.-A.
Chen et al. 2023 originally reported results for TSMixer using a single seed, we provide
results averaged over multiple runs with different seeds, ensuring a more reliable evalu-
ation. Additionally, for fair comparison, we evaluate TSMixer trained with SAM. We also
include results reported by Yong Liu et al. 2024 and S.-A. Chen et al. 2023 for several re-
cent transformer-based baselines: iTransformer (Yong Liu et al., 2024), PatchTST (Yuqi Nie
et al., 2023), FEDformer (T. Zhou, Ma, et al., 2022), Informer (H. Zhou et al., 2021), and
Autoformer (H. Wu et al., 2021). All models use RevIN (T. Kim et al., 2021), unless explicitly
stated otherwise, to maintain consistency.

As described above, all experiments are conducted using a look-back window of length
L = 512 and prediction horizons H ∈ {96, 192, 336, 720}. The results presented in Ta-
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Table 3.2: Neighborhood size ρ∗ at which SAMformer and TSMixer achieve their best per-
formance on the benchmarks.

H Model ETTh1 ETTh2 ETTm1 ETTm2 Electricity Exchange Traffic Weather

96
SAMformer 0.5 0.5 0.6 0.2 0.5 0.7 0.8 0.4
TSMixer 1.0 0.9 1.0 1.0 0.9 1.0 0.0 0.5

192
SAMformer 0.6 0.8 0.9 0.9 0.6 0.8 0.1 0.4
TSMixer 0.7 0.1 0.6 1.0 1.0 0.0 0.9 0.4

336
SAMformer 0.9 0.6 0.9 0.8 0.5 0.5 0.5 0.6
TSMixer 0.7 0.0 0.7 1.0 0.4 1.0 0.6 0.6

720
SAMformer 0.9 0.8 0.9 0.9 1.0 0.9 0.7 0.5
TSMixer 0.3 0.4 0.5 1.0 0.9 0.1 0.9 0.3

Table 3.3: Characteristics of the multivariate time series datasets used in our experiments
with various sizes and dimensions.

Dataset ETTh1/ETTh2 ETTm1/ETTm2 Electricity Exchange Traffic Weather

# features 7 7 321 8 862 21

# time steps 17420 69680 26304 7588 17544 52696

Granularity 1 hour 15 minutes 1 hour 1 day 1 hour 10 minutes

ble 3.4 for SAMformer, TSMixer, and Transformer are obtained from our own experiments,
averaged over 5 runs with different random seeds. Minor differences may be observed be-
tween our results for TSMixer without SAM and those reported in S.-A. Chen et al. 2023,
since we average performance across multiple seeds for robustness, whereas the original
paper reported single-seed performance. We also perform a Student’s t-test (Table 3.6) to
provide statistical significance between SAMformer and TSMixer trained with SAM.

It is noteworthy that, unlike other baselines including TSMixer, the overall structure of
SAMformer remains unchanged across all datasets, demonstrating robustness and elimi-
nating extensive hyperparameter tuning.

Finally, additional baseline results from the literature are included for thorough com-
parison. Results for Informer, Autoformer, and FEDformer on all datasets except Exchange
are sourced from S.-A. Chen et al. 2023. The Exchange dataset results for these models are
taken from their original papers and therefore do not use RevIN. Results for iTransformer
and PatchTST, reported by Yong Liu et al. 2024, employ RevIN. Note that iTransformer
incorporates both temporal and channel-wise attention. Our extensive experimental eval-
uation thus ensures a comprehensive and fair comparison across leading models in multi-
variate long-term time series forecasting.

Evaluation. All models are trained to minimize the MSE loss defined in Eq. (3.1). The
averageMSE on the test set, together with the standard deviation over 5 runs with different
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seeds is reported. Additional details and results, including theMean Absolute Error (MAE),
can be found in Table 3.5. Except specified otherwise, all our results are also obtained over
5 runs with different seeds.

3.3.1 Main Takeaways

SAMformer improves over state-of-the-art. The experimental results are detailed in
Table 3.4, with a Student’s t-test analysis available in Table 3.6. SAMformer outperforms
its competitors on 7 out of 8 datasets by a large margin. In particular, it improves over its
best competitor TSMixer+SAM by 5.25%, surpasses the standalone TSMixer by 14.33%
and the best multivariate transformer-based model FEDformer by 12.36%. In addition,
it improves over Transformer by 16.96%. SAMformer also outperforms the very recent
iTransformer, a transformer-based approach that uses both temporal and spatial atten-
tion, and PatchTST which was tailored for univariate time series forecasting. We notice
that iTransformer has mixed global performance and gets beaten by SAMformer on all
datasets, except Exchange on which it significantly outperforms all competitors. This ex-
plains that SAMformer improves it only by 3.94% overall but up to 8.38% without it.
Finally, SAMformer outperforms PatchTST by 11.13%. For every horizon and dataset (ex-
cept Exchange), SAMformer is ranked either first or second. Notably, SAM’s integration
improves the generalization capacity of TSMixer, resulting in an average enhancement
of 9.58%. A similar study with the MAE in Table 3.5 leads to the same conclusions. As
TSMixer trained with SAM is the second-best baseline almost always ranked second, it
serves as a primary benchmark for further discussion in this section. It should be noted
that SAMformer has 4 times fewer parameters than TSMixer, and several orders of mag-
nitude fewer than the transformer-based methods.

Significance Test for SAMformer and TSMixer with SAM. In this section, we per-
form a Student t-test between SAMformer and TSMixer trained with SAM. It should be
noted that TSMixer with SAM significantly outperforms vanilla TSMixer. We report the
results in Table 3.6. We observe that the SAMformer significantly improves upon TSMixer
trained with SAM on 7 out of 8 datasets.

Smoother loss landscape. The introduction of SAM in the training of SAMformermakes
its loss smoother than that of Transformer. We illustrate this in Figure 3.6 by comparing
the values of λmax for Transformer and SAMformer after training on ETTh1 and Exchange.
Our observations reveal that Transformer exhibits considerably higher sharpness, while
SAMformer has a desired behavior with a loss landscape sharpness that is an order of
magnitude smaller.

StrongGeneralizationRegardless of the Initialization SAMformer has a strong gen-
eralization capacity. In particular, Transformer heavily depends on the initialization, which
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Table 3.4: Performance comparison between our model (SAMformer) and baselines for
multivariate long-term forecasting with different horizons H. Results marked with † are
obtained from Yong Liu et al. 2024 and those marked with ∗ are obtained from S.-A. Chen
et al. 2023, along with the publication year of the respective methods. Transformer-based
models are abbreviated by removing the “former" part of their name. We display the aver-
age test MSE with standard deviation obtained on 5 runs with different seeds. Best results
are in bold, second best are underlined.

Dataset H

with SAM without SAM

SAMformer TSMixer Transformer TSMixer iTrans† PatchTST† In∗ Auto∗ FED∗

- - - 2023 2024 2023 2021 2021 2022

ET
Th

1

96 0.381±0.003 0.388±0.001 0.509±0.031 0.398±0.001 0.386 0.414 0.941 0.435 0.376

192 0.409±0.002 0.421±0.002 0.535±0.043 0.426±0.003 0.441 0.460 1.007 0.456 0.423

336 0.423±0.001 0.430±0.002 0.570±0.016 0.435±0.003 0.487 0.501 1.038 0.486 0.444

720 0.427±0.002 0.440±0.005 0.601±0.036 0.498±0.076 0.503 0.500 1.144 0.515 0.469

ET
Th

2

96 0.295±0.002 0.305±0.007 0.396±0.017 0.308±0.003 0.297 0.302 1.549 0.332 0.332

192 0.340±0.002 0.350±0.002 0.413±0.010 0.352±0.004 0.380 0.388 3.792 0.426 0.407

336 0.350±0.000 0.360±0.002 0.414±0.002 0.360±0.002 0.428 0.426 4.215 0.477 0.400

720 0.391±0.001 0.402±0.002 0.424±0.009 0.409±0.006 0.427 0.431 3.656 0.453 0.412

ET
Tm

1

96 0.329±0.001 0.327±0.002 0.384±0.022 0.336±0.004 0.334 0.329 0.626 0.510 0.326

192 0.353±0.006 0.356±0.004 0.400±0.026 0.362±0.006 0.377 0.367 0.725 0.514 0.365

336 0.382±0.001 0.387±0.004 0.461±0.017 0.391±0.003 0.426 0.399 1.005 0.510 0.392

720 0.429±0.000 0.441±0.002 0.463±0.046 0.450±0.006 0.491 0.454 1.133 0.527 0.446

ET
Tm

2

96 0.181±0.005 0.190±0.003 0.200±0.036 0.211±0.014 0.180 0.175 0.355 0.205 0.180

192 0.233±0.002 0.250±0.002 0.273±0.013 0.252±0.005 0.250 0.241 0.595 0.278 0.252

336 0.285±0.001 0.301±0.003 0.310±0.022 0.303±0.004 0.311 0.305 1.270 0.343 0.324

720 0.375±0.001 0.389±0.002 0.426±0.025 0.390±0.003 0.412 0.402 3.001 0.414 0.410

El
ec
tr
ic
it
y 96 0.155±0.002 0.171±0.001 0.182±0.006 0.173±0.004 - - 0.304 0.196 0.186

192 0.168±0.001 0.191±0.010 0.202±0.041 0.204±0.027 - - 0.327 0.211 0.197

336 0.183±0.000 0.198±0.006 0.212±0.017 0.217±0.018 - - 0.333 0.214 0.213

720 0.219±0.000 0.230±0.005 0.238±0.016 0.242±0.015 - - 0.351 0.236 0.233

Ex
ch
an

ge

96 0.161±0.007 0.233±0.016 0.292±0.045 0.343±0.082 0.086 0.088 0.847 0.197 0.139

192 0.246±0.009 0.342±0.031 0.372±0.035 0.342±0.031 0.177 0.176 1.204 0.300 0.256

336 0.368±0.006 0.474±0.014 0.494±0.033 0.484±0.062 0.331 0.301 1.672 0.509 0.426

720 1.003±0.018 1.078±0.179 1.323±0.192 1.204±0.028 0.847 0.901 2.478 1.447 1.090

Tr
aff

ic

96 0.407±0.001 0.409±0.016 0.420±0.041 0.409±0.016 0.395 0.462 0.733 0.597 0.576

192 0.415±0.005 0.433±0.009 0.441±0.039 0.637±0.444 0.417 0.466 0.777 0.607 0.610

336 0.421±0.001 0.424±0.000 0.501±0.154 0.747±0.277 0.433 0.482 0.776 0.623 0.608

720 0.456±0.003 0.488±0.028 0.468±0.021 0.688±0.287 0.467 0.514 0.827 0.639 0.621

W
ea
th
er

96 0.197±0.001 0.189±0.003 0.227±0.012 0.214±0.004 0.174 0.177 0.354 0.249 0.238

192 0.235±0.000 0.228±0.004 0.256±0.018 0.231±0.003 0.221 0.225 0.419 0.325 0.275

336 0.276±0.001 0.271±0.001 0.278±0.001 0.279±0.007 0.278 0.278 0.583 0.351 0.339

720 0.334±0.000 0.331±0.001 0.353±0.002 0.343±0.024 0.358 0.354 0.916 0.415 0.389

Overall MSE improvement 5.25% 16.96% 14.33% 3.94% 11.13% 72.20% 22.65% 12.36%

might be due to bad local minima as its loss landscape is sharper than the one of SAM-
former. We display in Figure 3.7 and Figure 3.8 the distribution of the test MSE on 5
runs on the datasets used in our experiments (Table 3.3) and various prediction horizons

– 67 –



Chapter 3

Table 3.5: Performance comparison between our model (SAMformer) and baselines for
multivariate long-term forecasting with different horizons H. Results marked with † are
obtained from Yong Liu et al. 2024 and those marked with ∗ are obtained from S.-A. Chen
et al. 2023, along with the publication year of the respective methods. Transformer-based
models are abbreviated by removing the “former" part of their name. We display the aver-
age test MAE with standard deviation obtained on 5 runs with different seeds. Best results
are in bold, second best are underlined.

Dataset H

with SAM without SAM

SAMformer TSMixer Transformer TSMixer iTrans† PatchTST† In∗ Auto∗ FED∗

- - - 2023 2024 2023 2021 2021 2022

ET
Th

1

96 0.402±0.001 0.408±0.001 0.619±0.203 0.414±0.004 0.405 0.419 0.769 0.446 0.415

192 0.418±0.001 0.426±0.002 0.513±0.024 0.428±0.001 0.436 0.445 0.786 0.457 0.446
336 0.425±0.000 0.434±0.001 0.529±0.008 0.434±0.001 0.458 0.466 0.784 0.487 0.462
720 0.449±0.002 0.459±0.004 0.553±0.021 0.506±0.064 0.491 0.488 0.857 0.517 0.492

ET
Th

2

96 0.358±0.002 0.367±0.002 0.416±0.025 0.367±0.003 0.349 0.348 0.952 0.368 0.374
192 0.386±0.003 0.393±0.001 0.435±0.019 0.395±0.003 0.400 0.400 1.542 0.434 0.446
336 0.395±0.002 0.404±0.004 0.434±0.014 0.404±0.002 0.432 0.433 1.642 0.479 0.447
720 0.428±0.001 0.435±0.002 0.448±0.006 0.441±0.005 0.445 0.446 1.619 0.490 0.469

ET
Tm

1

96 0.363±0.001 0.363±0.001 0.395±0.024 0.371±0.002 0.368 0.367 0.560 0.492 0.390

192 0.378±0.003 0.381±0.002 0.414±0.027 0.384±0.003 0.391 0.385 0.619 0.495 0.415
336 0.394±0.001 0.397±0.002 0.445±0.009 0.399±0.003 0.420 0.410 0.741 0.492 0.425
720 0.418±0.000 0.425±0.001 0.456±0.035 0.429±0.002 0.459 0.439 0.845 0.493 0.458

ET
Tm

2

96 0.274±0.010 0.284±0.004 0.290±0.026 0.302±0.013 0.264 0.259 0.462 0.293 0.271

192 0.306±0.001 0.320±0.001 0.347±0.025 0.323±0.005 0.309 0.302 0.586 0.336 0.318

336 0.338±0.001 0.350±0.001 0.360±0.017 0.352±0.003 0.348 0.343 0.871 0.379 0.364
720 0.390±0.001 0.402±0.002 0.424±0.014 0.402±0.003 0.407 0.400 1.267 0.419 0.420

El
ec
tr
ic
it
y 96 0.252±0.002 0.273±0.001 0.288±0.013 0.277±0.003 - - 0.393 0.313 0.302

192 0.263±0.001 0.292±0.011 0.304±0.033 0.304±0.027 - - 0.417 0.324 0.311
336 0.277±0.000 0.297±0.007 0.315±0.018 0.317±0.018 - - 0.422 0.327 0.328
720 0.306±0.000 0.321±0.006 0.330±0.014 0.333±0.015 - - 0.427 0.342 0.344

Ex
ch
an

ge

96 0.306±0.006 0.363±0.013 0.369±0.049 0.436±0.054 0.206 0.205 0.752 0.323 0.276

192 0.371±0.008 0.437±0.021 0.416±0.041 0.437±0.021 0.299 0.299 0.895 0.369 0.369

336 0.453±0.004 0.515±0.006 0.491±0.036 0.523±0.029 0.417 0.397 1.036 0.524 0.464
720 0.750±0.006 0.777±0.064 0.823±0.040 0.818±0.007 0.691 0.714 1.310 0.941 0.800

Tr
aff

ic

96 0.292±0.001 0.300±0.020 0.306±0.033 0.300±0.020 0.268 0.295 0.410 0.371 0.359
192 0.294±0.005 0.317±0.012 0.321±0.034 0.419±0.218 0.276 0.296 0.435 0.382 0.380
336 0.292±0.000 0.299±0.000 0.348±0.093 0.501±0.163 0.283 0.304 0.434 0.387 0.375
720 0.311±0.003 0.344±0.026 0.325±0.023 0.458±0.159 0.302 0.322 0.466 0.395 0.375

W
ea
th
er

96 0.249±0.001 0.242±0.002 0.281±0.018 0.271±0.009 0.214 0.218 0.405 0.329 0.314
192 0.277±0.000 0.272±0.003 0.302±0.020 0.275±0.003 0.254 0.259 0.434 0.370 0.329
336 0.304±0.001 0.299±0.001 0.310±0.012 0.307±0.009 0.296 0.297 0.543 0.391 0.377
720 0.342±0.000 0.341±0.002 0.363±0.002 0.351±0.021 0.347 0.348 0.705 0.426 0.409

Overall MAE improvement 3.99% 11.63% 9.60% 2.05% 2.75% 53.00% 15.67% 9.93%

H ∈ {96, 192, 336, 720}. SAMformer consistently demonstrates strong and stable perfor-
mance across different datasets and horizons, independent of the seed. On the contrary,
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Table 3.6: Significance test with Student’s t-test and performance comparison between
SAMformer and TSMixer trained with SAM across various datasets and prediction hori-
zons. We display the average and standard deviation of the test MSE obtained on 5 runs
(mean±std). The performance of the best model is in bold when the improvement is statis-
tically significant at the level 0.05 (p-value < 0.05).

H Model ETTh1 ETTh2 ETTm1 ETTm2 Electricity Exchange Traffic Weather

96
SAMformer 0.381±0.003 0.295±0.002 0.329±0.001 0.181±0.005 0.155±0.002 0.161±0.007 0.407±0.001 0.197±0.001

TSMixer 0.388±0.001 0.305±0.007 0.327±0.002 0.190±0.003 0.171±0.001 0.233±0.016 0.409±0.016 0.189±0.003

192
SAMformer 0.409±0.002 0.340±0.002 0.353±0.006 0.233±0.002 0.168±0.001 0.246±0.009 0.415±0.005 0.235±0.000

TSMixer 0.421±0.002 0.350±0.002 0.356±0.004 0.250±0.002 0.191±0.010 0.342±0.031 0.433±0.009 0.228±0.004

336
SAMformer 0.423±0.001 0.350±0.000 0.382±0.001 0.285±0.001 0.183±0.000 0.368±0.006 0.421±0.001 0.276±0.001

TSMixer 0.430±0.002 0.360±0.002 0.387±0.004 0.301±0.003 0.198±0.006 0.474±0.014 0.424±0.000 0.271±0.001

720
SAMformer 0.427±0.002 0.391±0.001 0.429±0.000 0.375±0.001 0.219±0.000 1.003±0.018 0.456±0.003 0.334±0.000

TSMixer 0.440±0.005 0.402±0.002 0.441±0.002 0.389±0.002 0.230±0.005 1.078±0.179 0.488±0.028 0.331±0.001

the performance of Transformer is unstable with a large generalization gap depending on
the seed.

3.3.2 Qualitative Benefits of Our Approach

Computational efficiency. SAMformer is computationallymore efficient than TSMixer
and usual transformer-based approaches, benefiting from a shallow lightweight implemen-
tation, i.e., a single layer with one attention head. The number of parameters of SAMformer
and TSMixer is detailed in Table 3.7. We observe that, on average, SAMformer has ∼ 4
times fewer parameters than TSMixer, which makes this approach even more remarkable.
Importantly, TSMixer itself is recognized as a computationally efficient architecture com-
pared to the transformer-based baselines (S.-A. Chen et al., 2023, Table 6).

Fewer hyperparameters and versatility. SAMformer requires minimal hyperparam-
eters tuning, contrary to other baselines, including TSMixer and FEDformer. In particular,
SAMformer’s architecture remains the same for all our experiments, while TSMixer varies
in terms of the number of residual blocks and feature embedding dimensions, depend-
ing on the dataset. This versatility also comes with better robustness to the prediction
horizon H. In Figure 3.9, we display the evolution forecasting accuracy on all datasets
for H ∈ {96, 192, 336, 720} for SAMformer and TSMixer (trained with SAM). We observe
that SAMformer consistently outperforms its best competitor TSMixer (trained with SAM)
for all horizons.

Better attention. We display the attention matrices after training on Weather with the
prediction horizon H = 96 for Transformer, SAMformer and Transformer + σReparam in
Figure 3.10. We note that Transformer excludes self-correlation between features, having
low values on the diagonal, while SAMformer strongly promotes them. This pattern is
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Figure 3.9: Evolution of the test MSE on all datasets for a prediction horizon H ∈
{96, 192, 336, 720}. We display the average test MSE with a 95% confidence interval. We
see that SAMformer consistently performswell with a low variance. Despite its lightweight
(Table 3.7), SAMformer surpasses TSMixer (trained with SAM) on 7 out of 8 datasets as
shown in Table 3.4 and Table 3.6.

reminiscent of B. He et al. 2023 and Trockman & Kolter 2023: both works demonstrated
the importance of diagonal patterns in attention matrices for signal propagation in trans-
formers used in NLP and computer vision. Our experiments reveal that these insights also
apply to time-series forecasting. Note that freezing the attention to A(X) = ID is largely
outperformed by SAMformer as shown in Table 3.10, which confirms the importance of
learnable attention. The attention matrix given by σReparam at Figure 3.10 has almost
equal rows, leading to rank collapse. In Figure 3.11, we display the distributions of nuclear
norms of attention matrices after training Transformer, SAMformer and σReparam. We
observe that σReparam heavily penalizes the nuclear norms of the attention matrix, which
is coherent with Proposition 3.2.2. In contrast, SAMformer maintains it above Transformer,
thus improving the expressiveness of attention.

Computational Efficiency of SAMformer. We compare in Table 3.7 the number of pa-
rameters of SAMformer and TSMixer on the several benchmarks used in our experiments.
We also display the ratio between the number of parameters of TSMixer and the number
of parameters of SAMformer. Overall, SAMformer has ∼ 4 times fewer parameters than
TSMixer while outperforming it by 14.33% on average.

Faithful Signal Propagation. In this section, we consider Transformer, SAMformer,
σReparam, which corresponds to Transformer with the rescaling proposed by Zhai et
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Transformer Reparam SAMformer 

0.2

0.5

0.8

Figure 3.10: Attention matrices on Weather dataset. SAMformer preserves self-correlation
among features while σReparam degrades the rank, hindering the propagation of infor-
mation.

Figure 3.11: Nuclear norm of the attention matrix for different models: σReparam induces
lower nuclear norm in accordance with Proposition 3.2.2, while SAMformer keeps the ex-
pressiveness of the attention over Transformer.

al. 2023 and SAMformer + σReparam which is SAMformer with the rescaling proposed
by Zhai et al. 2023. We plot a batch of attention matrices after training with prediction
horizon H = 96 (our primary study does not identify significant changes with the value
of horizon) on Weather in Figures 3.12 and 3.13. While Transformer tends to ignore the
importance of a feature on itself by having low values on the diagonal, we can see in Fig-
ure 3.13 that SAMformer strongly encourages these feature-to-feature correlations. A very
distinctive pattern is observable: a near-identity attention reminiscent of B. He et al. 2023
and Trockman & Kolter 2023. The former showed that pretrained vision models present
similar patterns and both identified the benefits of such attention matrices for the propa-
gation of information along the layers of deep transformers in NLP and computer vision.
While in our setting, we have a single-layer transformer, this figure indicates that at the
end of the training, self-information from features to themselves is not lost. In contrast,
we see that σReparam leads to almost rank-1 matrices with identical columns. This con-
firms the theoretical insights from Theorem 3.2.2 that showed how rescaling the train-
able weights with σReparam to limit the magnitude of ∥WQW

⊤
K∥2 could hamper the rank

of XWQW
⊤
KX

⊤ and of the attention matrix. Finally, we observe that naively combining
SAMformer with σReparam does not solve the issues: while some diagonal patterns re-
main, most of the information has been lost. Moreover, combining both σReparam and
SAMformer heavily increases the training time, as shown in Figure 3.14.
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(b) σReparam

Figure 3.12: Batch of 32 attention matrices onWeather with horizonH = 96 after training:
(a) Transformer, (b) σReparam.

3.3.3 SAMformer vs MOIRAI

In this section, we show that despite its simplicity, SAMformer is a strong baseline com-
peting not only with the dedicated time series methods (Table 3.4), such as TSMixer but
also with the biggest existing time series forecasting foundation model MOIRAI (G. Woo
et al., 2024c) that was trained on the largest pretraining corpus LOTSA with nearly 27 bil-
lion observations. MOIRAI was provided in three sizes: small (14 million parameters),
base (91million) and large (314million). Table 3.8 shows that SAMformer performs on par
with MOIRAI on most datasets, surpasses it on three, and overall achieves improvements
ranging from at least 1.1% to 7.6%. This comparison highlights again the fact that SAM-
former shows impressive performance, globally superior to its competitors while having
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Figure 3.13: Batch of 32 attention matrices onWeather with horizonH = 96 after training:
(a) SAMformer, and (b) SAMformer + σReparam.
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Figure 3.14: Using σReparam on top of SAMformer heavily increases the training time.
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Table 3.7: Comparison of the number of parameters between SAMformer and TSMixer on
the datasets described in Table 3.3 for prediction horizons H ∈ {96, 192, 336, 720}. We
also compute the ratio between the number of parameters of TSMixer and the number of
parameters of SAMformer. A ratio of 10means that TSMixer has 10 timesmore parameters
than SAMformer. For each dataset, we display in the last cell of the corresponding row the
ratio averaged over all the horizons H. The overall ratio over all datasets and horizons is
displayed in bold in the bottom right-hand cell.

Dataset
H = 96 H = 192 H = 336 H = 720

Total

SAMformer TSMixer SAMformer TSMixer SAMformer TSMixer SAMformer TSMixer

ETT 50272 124142 99520 173390 173392 247262 369904 444254 -
Exchange 50272 349344 99520 398592 173392 472464 369904 669456 -
Weather 50272 121908 99520 171156 173392 245028 369904 442020 -
Electricity 50272 280676 99520 329924 173392 403796 369904 600788 -
Traffic 50272 793424 99520 842672 173392 916544 369904 1113536 -

Avg. Ratio 6.64 3.85 2.64 1.77 3.73

Table 3.8: Comparison performance of SAMformer and MOIRAI (G. Woo et al., 2024c)
for multivariate long-term forecasting. We display the test MSE averaged over horizons
{96, 192, 336, 720}. Best results are in bold, second best are underlined.

Dataset
Full-shot Zero-shot (G. Woo et al., 2024c).

SAMformer MOIRAISmall MOIRAIBase MOIRAILarge

ETTh1 0.410 0.400 0.434 0.510

ETTh2 0.344 0.341 0.345 0.354

ETTm1 0.373 0.448 0.381 0.390

ETTm2 0.269 0.300 0.272 0.276

Electricity 0.181 0.233 0.188 0.188

Weather 0.260 0.242 0.238 0.259

Overall MSE improvement 6.9% 1.1% 7.6%

much less trainable parameters.

3.3.4 Ablation Study and Sensitivity Analysis

Choices of implementation. We compared our architecture, which utilizes channel-
wise attention (Eq.(3.3)), with a temporal-wise attention approach. As shown in Table 3.9,
ourmethod demonstrates superior performance in the evaluated setting. Experimentswere
conducted using Adam (Kingma & Ba, 2015), the standard optimizer for transformers (Ahn
et al., 2023; Y. Pan & Y. Li, 2022; T. Zhou, Ma, et al., 2022; H. Zhou et al., 2021; X. Chen et
al., 2022). An in-depth ablation study is provided to justify this choice. As expected (Ahn
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et al., 2023; L. Liu et al., 2020; Y. Pan & Y. Li, 2022; J. Zhang et al., 2020), SGD (Nesterov,
1983) fails to converge while AdamW (Loshchilov & Hutter, 2019) also struggles, showing
unstable performance that is highly sensitive to the choice of weight decay strength, as
illustrated in Figure 3.18.

Sensitivity to the neighborhood size ρ. The test MSE of SAMformer and TSMixer is
depicted in Figure 3.15 as a function of the neighborhood size ρ. It appears that TSMixer,
with its quasi-linear architecture, exhibits less sensitivity to ρ compared to SAMformer.
This behavior is consistent with the understanding that, in linear models, the sharpness
does not change with respect to ρ, given the constant nature of the loss function’s Hessian.
Consequently, TSMixer benefits less from changes in ρ than SAMformer. Our observations
consistently show that a sufficiently large ρ, generally above 0.7 enables SAMformer to
achieve lower MSE than TSMixer.

SAM vs σReparam. Wementioned previously that σReparam doesn’t improve the per-
formance of a transformer on a simple toy example, although it makes it comparable to the
performance of a transformer with fixed random attention. To further show that σReparam
doesn’t provide an improvement on real-world datasets, we show in Figure 3.16 that on
ETTh1 and Exchange, σReparam alone fails to match SAMformer’s improvements, even
underperforming Transformer in some cases. A potential improvement may come from
combining SAMandσReparam to smooth a rather sparsematrix obtainedwith SAM.How-
ever, as Figure 3.17 illustrates, this combination does not surpass the performance of using
SAM alone. Furthermore, combining SAM and σReparam significantly increases training
time and memory usage, especially for larger datasets and longer horizons (Figure 3.14),
indicating its inefficiency as a method.

Sensitivity to the Change of the Optimizer. In our work, we considered the Adam
optimizer (Kingma & Ba, 2015) as it is the de-facto optimizer for transformer-based models
(Ahn et al., 2023; Y. Pan & Y. Li, 2022; T. Zhou, Ma, et al., 2022; H. Zhou et al., 2021; X.
Chen et al., 2022). The superiority of Adam to optimize networks with attention has been
empirically and theoretically studied, where recent works show that the SGD (Nesterov,
1983) was not suitable for attention-based models (Ahn et al., 2023; L. Liu et al., 2020; Y. Pan
& Y. Li, 2022; J. Zhang et al., 2020). To ensure the thoroughness of our investigation, we
conducted experiments on the synthetic dataset introduced in Eq. (3.2) and reported the
results in Figure 3.18a. As expected, we see that using SGD leads to high-magnitude losses
and divergence. We also conducted the same experiments with the AdamW (Loshchilov &
Hutter, 2019) that incorporates the weight decay scheme in the adaptive optimizer Adam
(Kingma & Ba, 2015). We display the results obtained with weight decay factors wd =
1e−3 in Figure 3.18a and with wd ∈ {1e−5, 1e−4} in Figure 3.18b. When wd = 1e−3,
we observe that it does not converge. However, with wd ∈ {1e−5, 1e−4}, we observe a
similar behavior for Transformer than when it is trained with Adam (Figure 3.2). Hence,
using AdamW does not lead to the significant benefits brought by SAM (Figure 3.1). As the
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(a) Sensitivity analysis on ETT datasets.

(b) Sensitivity analysis on Electricity, Exchange, Traffic and Weather datsets.

Figure 3.15: Test MSE vs. ρ (Remark A.1.1), with mean MSE and 95% confidence interval.
SAMformer is smoother and generally outperforms TSMixer over wide ρ ranges. For ρ = 0,
SAM reduces to Adam, confirming consistent improvements. Despite fewer parameters
(Table 3.7), SAMformer achieves the lowestMSE on 7/8 datasets (Tables 3.4, 3.6). Compared
to X. Chen et al. 2022, larger ρ is needed to improve generalization.
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Figure 3.16: Suboptimality of σReparam. Comparison of Transformer, σReparam, and
SAMformer. The results indicate that σReparam alone does not improve the performance
of Transformer and is clearly outperformed by SAMformer.
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Figure 3.17: Suboptimality of σReparam. Comparison of SAMformer and SAMformer aug-
mented with σReparam. While the combination does not yield a significant improvement
in performance, it substantially increases the training time (see Figure 3.14).

optimization is very sensitive to the value of weight decay wd, it motivates us to conduct
our experiments with Adam.

Ablation on the Implementation. This ablation study contrasts two variants of our
model to showcase the effectiveness of Sharpness-Aware Minimization (SAM) and our
attention approach. Identity Attention represents SAMformer with an attention weight
matrix constrained to identity, illustrating that SAM does not simply reduce the attention
weight matrix to identity, as performance surpasses this configuration. Temporal Attention
is compared to our Transformer without SAM, highlighting our focus on treating feature
correlations in the attention mechanism rather than temporal correlations.
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(b) AdamW with wd ∈ {1e−5, 1e−4}.

Figure 3.18: Illustration of different optimizers on synthetic data generated with Eq. (3.2)
where Oracle is the least-square solution. We saw in Figure 3.1 that with Adam, Trans-
former overfits and has poor performance while SAMformer smoothly reaches the ora-
cle. (a) We observe that using SGD and Adam with weight decay wd = 1e−5 leads
to huge loss magnitudes and fails to converge. (b) With well-chosen weight decays
(wd ∈ {1e−3, 1e−4}), training Transformer with AdamW leads to similar performance
than Adam. The overfitting is noticeable and the training is unstable. AdamW does not
bring more stabilization and is very sensitive to the hyperparameters. Hence, this toy ex-
ample motivates us to conduct our thorough experiments with the optimizer Adam.

3.4 Discussion and Future Work

In this work, we demonstrated how simple transformers can reclaim their place as state-
of-the-art models in long-term multivariate series forecasting from their MLP-based com-
petitors. Rather than concentrating on new architectures and attention mechanisms, we
analyzed the current pitfalls of transformers in this task and addressed them by carefully
designing an appropriate training strategy. Our findings suggest that even a simple shallow
transformer has a very sharp loss landscape which makes it converge to poor local minima.
We analyzed popular solutions proposed in the literature to address this issue and showed
which of them work or fail. Our proposed SAMformer, optimized with sharpness-aware
minimization, leads to a substantial performance gain compared to the existing forecast-
ing baselines, including the current largest foundation model MOIRAI, and benefits from
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Table 3.9: The Temporal Attention model is benchmarked against our Transformer model,
which employs feature-based attention rather than time-step-based attention. We report
in the last column the Overall improvement in MSE and MAE of Transformer over the
Temporal Attention. This comparison reveals that channel-wise attention, i.e., focusing
on features pairwise correlations, significantly boosts the performance, with a 12.97%
improvement in MSE and 18.09% in MAE across all considered datasets.

Model Metrics H ETTh1 ETTh2 ETTm1 ETTm2 Electricity Exchange Traffic Weather
Overall

Improvement

Te
m
po

ra
lA

tt
en
ti
on MSE

96 0.496±0.009 0.401±0.011 0.542±0.063 0.330±0.034 0.291±0.025 0.684±0.218 0.933±0.188 0.225±0.005

12.97%
192 0.510±0.014 0.414±0.020 0.615±0.056 0.394±0.033 0.294±0.024 0.434±0.063 0.647±0.131 0.254±0.001
336 0.549±0.017 0.396±0.014 0.620±0.046 0.436±0.081 0.290±0.016 0.473±0.014 0.656±0.113 0.292±0.000
720 0.604±0.017 0.396±0.010 0.694±0.055 0.469±0.005 0.307±0.014 1.097±0.084 - 0.346±0.000

MAE

96 0.488±0.007 0.434±0.006 0.525±0.040 0.393±0.020 0.386±0.014 0.589±0.096 0.598±0.072 0.277±0.004

18.09%
192 0.492±0.010 0.443±0.015 0.566±0.032 0.421±0.019 0.385±0.014 0.498±0.033 0.467±0.072 0.294±0.001
336 0.517±0.012 0.440±0.012 0.550±0.024 0.443±0.039 0.383±0.009 0.517±0.008 0.469±0.070 0.320±0.000
720 0.556±0.009 0.442±0.006 0.584±0.027 0.459±0.004 0.396±0.012 0.782±0.041 - 0.356±0.000

Table 3.10: Identity Attention represents our SAMformer with the attention weight matrix
constrained to an identity matrix. We report in the last column theOverall improvement

in MSE and MAE of SAMformer over the Identity Attention. This setup demonstrates that
naively fixing the attention matrix to the identity does not enable to match the perfor-
mance of SAM, despite the near-identity attention matrices SAM showcases. In particular,
we observe an overall improvement of 11.93% in MSE and 4.18% in MAE across all the
datasets.

Model Metrics H ETTh1 ETTh2 ETTm1 ETTm2 Electricity Exchange Traffic Weather
Overall

Improvement

Id
en
ti
ty

A
tt
en
ti
on MSE

96 0.477±0.059 0.346±0.055 0.345±0.027 0.201±0.035 0.175±0.015 0.179±0.031 0.416±0.037 0.206±0.019

11.93%
192 0.467±0.074 0.374±0.031 0.384±0.042 0.248±0.016 0.189±0.022 0.320±0.070 0.437±0.041 0.236±0.002
336 0.512±0.070 0.372±0.024 0.408±0.032 0.303±0.022 0.211±0.019 0.443±0.071 0.500±0.155 0.277±0.003
720 0.505±0.107 0.405±0.012 0.466±0.043 0.397±0.029 0.233±0.019 1.123±0.076 0.468±0.021 0.338±0.009

MAE

96 0.473±0.041 0.395±0.033 0.376±0.019 0.294±0.027 0.283±0.023 0.320±0.023 0.301±0.039 0.259±0.021

4.18%
192 0.463±0.055 0.413±0.022 0.399±0.030 0.321±0.012 0.291±0.029 0.418±0.043 0.314±0.042 0.278±0.002
336 0.490±0.049 0.413±0.015 0.411±0.019 0.354±0.018 0.309±0.021 0.498±0.041 0.350±0.106 0.305±0.003
720 0.496±0.066 0.438±0.008 0.444±0.030 0.406±0.017 0.322±0.021 0.788±0.021 0.325±0.023 0.347±0.009

a high versatility and robustness across datasets and prediction horizons. Finally, we also
showed that channel-wise attention in time series forecasting can be more efficient – both
computationally and performance-wise – than temporal attention commonly used previ-
ously. We believe that this surprising finding may spur many further works building on
top of our simple architecture to improve it even further.
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On Multi-Task Learning in Multivariate
Time Series Forecasting

Summary. We present a novel approach to multivariate time series forecasting by fram-
ing it as a multi-task learning problem. We propose an optimization strategy that enhances
single-channel predictions by leveraging information across multiple channels. Our frame-
work offers a closed-form solution for linear models and connects forecasting performance
to key statistical properties using advanced analytical tools. Empirical results on both syn-
thetic and real-world datasets demonstrate that integrating our method into training loss
functions significantly improves univariatemodels by effectively utilizingmultivariate data
within a multi-task learning framework.

4.1 Introduction

Multivariate time series forecasting (MTSF) is central to numerous applications involv-
ing the simultaneous prediction of multiple interrelated variables, such as medical signals
(Čepulionis & Lukoševičiūtė, 2016), energy consumption (UCI, 2015), weather conditions
(Max Planck Institute, 2021), and financial markets (Sonkavde et al., 2023). Forecasting
accurately in these contexts requires addressing intricate challenges, including capturing
cross-channel dependencies, managing long-term temporal correlations, and preventing
model overfitting, particularly when data is limited or noisy.

Existing methods for MTSF range from classical statistical models such as ARIMA
(George Edward Pelham Box & G. Jenkins, 1990; G. E. P. Box et al., 1974) to sophisticated
deep learning architectures, including recurrent and convolutional neural networks (Sali-
nas et al., 2020b; Sen et al., 2019; Guokun Lai et al., 2018c). Recently, Transformer-based
architectures have gained popularity due to their success in natural language processing
and computer vision (Vaswani et al., 2017; Dosovitskiy et al., 2021b; Touvron, Lavril, Izac-
ard, Martinet, Lachaux, Lacroix, Rozière, Goyal, Hambro, Azhar, et al., 2023b). However,
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these architectures encounter significant limitations when directly applied to multivariate
time series, often failing to surpass simpler linear approaches (Zeng, M. Chen, et al., 2023;
S.-A. Chen et al., 2023). A core limitation arises because many forecasting methods either
treat each channel independently or rely heavily on complex decomposition techniques
(Yuqi Nie et al., 2023; H. Wu et al., 2021), leading either to suboptimal data utilization or
computationally demanding models.

To overcome these limitations, this chapter explicitly frames MTSF as a multi-task
learning (MTL) problem (Caruana, 1997), where each channel of a multivariate series cor-
responds to a distinct but related forecasting task. Under this perspective, cross-channel
information is naturally leveraged through shared learning representations, enabling ef-
fective utilization of common temporal patterns. Historically, MTL has demonstrated sub-
stantial improvements in generalization across various domains, including computer vision
(Shao, 2015), natural language processing (Ruder et al., 2019; Raffel et al., 2020), and compu-
tational biology (Mei et al., 2011; Shin et al., 2016; Hu et al., 2019). Yet, explicit application
of MTL frameworks for multivariate forecasting, particularly for linear and interpretable
methods, remains relatively underexplored.

This thesis develops a straightforward yet powerful optimization framework within
the MTL paradigm specifically tailored for MTSF. Our method decomposes the forecast-
ing model into shared and task-specific components, explicitly controlling this balance
through data-driven hyperparameters. By employing advanced analytical tools, including
closed-form solutions for linear settings and precise statistical analyses inspired by Ran-
dom Matrix Theory (RMT) (Z. Bai & Silverstein, 2010; T. Tao, 2012), we quantify how simi-
larities and differences among channels influence predictive performance. Specifically, we
analyze conditions that facilitate positive knowledge transfer—where shared information
improves forecasting accuracy—and avoid negative transfer scenarios, where dissimilari-
ties between tasks could degrade performance (F. Yang et al., 2023).

Unlike existing theoretical studies offering broad and often impractical performance
bounds (Sai Li et al., 2022; Mousavi Kalan et al., 2020; Nguyen & Couillet, 2023), our
methodology delivers concrete guidance for practical hyperparameter tuning directly in-
formed by dataset characteristics. Empirical validations on both synthetic and real-world
datasets confirm that our method significantly improves baseline univariate forecasting
models such as PatchTST (Yuqi Nie et al., 2023) and DLinear (Zeng, M. Chen, et al., 2023)
by effectively capturing inter-channel dependencies. Moreover, our results demonstrate
predictive performance comparable to sophisticated multivariate models such as SAM-
former (Ilbert et al., 2024) and iTransformer (Yong Liu et al., 2024), all while maintaining
simplicity, interpretability, and computational efficiency.

Our Method. We approach MTSF using a multi-task learning framework (Caruana,
1997), where each of the T time series channels is considered as an individual task. For
clarity, we denote L as the historical length of the time series, consistent with the previous
chapters, andH as the prediction horizon. Additionally, for convenience in this context, we
use T to represent the number of tasks. Note that T corresponds to d , the number of chan-
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nels, as used in the previous chapter. Each task t ∈ {1, . . . , T} is defined by an input space
X (t) ⊂ RL and an output space Y(t) ⊂ RH. For each task t , we assume that we are given
nt training examples organized into the feature matrix X(t) = [x(t)1 , . . . , x

(t)
nt ] ∈ RL×nt and

the corresponding response matrix Y(t) = [y(t)1 , . . . , y
(t)
nt ] ∈ RH×nt , where x

(t)
i ∈ X (t) rep-

resents the i -th feature vector of the t-th task and y(t)i ∈ Y(t) is the associated response.
In particular, we study a straightforward linear signal-plus-noise model that evaluates the
response y(t)i for the i -th sample of the t-th task as follows:

∀t ∈ {1, . . . , T}, Y(t) =
X(t)

⊤
Wt√
Td

+ ε(t) (4.1)

where ε(t) ∈ Rnt×H is a matrix of noise vectors with each ε(t)i ∼ N (0,ΣN), ΣN ∈ RH×H
denoting the covariance matrix.

ThematrixWt ∈ RL×H denotes the signal-generating hyperplane for task t . We denote
the concatenation of all task-specific hyperplanes byW = [W⊤1 , . . . ,W

⊤
T ]
⊤ ∈ RTL×H. We

assume thatWt can be decomposed as a sum of a common matrixW0 ∈ RL×H, which
captures the shared information across all the tasks, and a task-specific matrixVt ∈ RL×H,
which captures deviations specific to the task t :

Wt =W0 + Vt . (4.2)

Given the multitask regression framework and the linear signal-plus-noise model, we now
want to retrieve the common and specific hyperplanes,W0 andVt , respectively. To achieve
this, we study the followingminimization problem governed by a parameterλ that controls
the balance between the common and specific components ofW:

(W∗0, {V∗t}Tt=1, λ∗) = arg min
W0,{Vt},λ

[
1

2λ
∥W0∥2F +

1

2

T∑
t=1

∥Vt∥2F
γt

+
1

2

T∑
t=1

∥∥∥∥∥Y(t) − X(t)
⊤
Wt√
TL

∥∥∥∥∥
2

F

]
(4.3)

where γ = [γ1, . . . , γT ] is a vector of task-specific regularization hyperparameters.
Each γt controls how much the model overfits (small γt ) or underfits (large γt ) on task t .

Contributions. Our contributions are as follows:

1. We formalize MTSF as an MTL problem, providing an optimization framework with
closed-form solutions in linear contexts.

2. We propose a practical, data-driven method for selecting hyperparameters that con-
trol the balance between shared and task-specific components, directly informed by
data statistics.
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3. Through extensive empirical evaluation, we demonstrate our framework’s superi-
ority over existing single-task baselines and competitiveness with state-of-the-art
multivariate models.

4. Our approach improves robustness and interpretability by explicitly leveraging cross-
channel similarities, which traditional forecasting methods neglect.

Results. We validate our framework on multivariate time series forecasting, showing
that ourmulti-task learning approach enhances univariate forecastingmodels like PatchTST
(Yuqi Nie et al., 2023) and DLinear (Zeng, M. Chen, et al., 2023) by leveraging shared learn-
ing across channels. Our method achieves performance comparable to state-of-the-art
multivariate models such as SAMformer (Ilbert et al., 2024) and iTransformer (Yong Liu
et al., 2024), demonstrating the effectiveness of treating MTSF as a multi-task learning
problem.

4.2 Framework

Notations. Throughout this study, matrices are represented by bold uppercase letters
(e.g., matrix A), vectors by bold lowercase letters (e.g., vector v), and scalars by regular,
non-bold typeface (e.g., scalar a). The notation A ⊗ B for matrices or vectors A,B is the
Kronecker product. Dx or Diag(x) stands for a diagonal matrix containing on its diagonal
the elements of the vector x. The superscripts t and i are used to denote the task and the
sample number, respectively, e.g., x(t)i writes the i -th sample of the t-th task. The canonical
vector of RT is denoted by e[T ]t with [e [T ]t ]i = δti . Given a matrixM ∈ Rp×n, the Frobenius
norm of M is denoted ∥M∥F ≡

√
tr(M⊤M). For our theoretical analysis, we introduce

the following notation of training data:

Y = [Y(1), . . . ,Y(T )] ∈ RH×n, Z =

T∑
t=1

(
e
[T ]
t e

[T ]
t

⊤)
⊗ X(t) ∈ RTL×n

where n =
∑T

t=1 nt is the total number of samples in all the tasks.

4.2.1 Multi-Task Model

We solve the multi-task forecasting problem by finding Ŵ = [Ŵ⊤1 , . . . , Ŵ
⊤
T ]
⊤ ∈ RLT×H

under the assumptionWt =W0+Vt , whereW0 is the shared component. The optimiza-
tion problem is:

min
(W0,V)∈RL×H×RLT×H

J (W0,V),

where

J (W0,V) =
1

2λ
∥W0∥2F +

1

2

T∑
t=1

∥Vt∥2F
γt

+
1

2

T∑
t=1

∥∥∥∥∥Y(t) − X(t)
⊤
Wt√
TL

∥∥∥∥∥
2

F

.
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This convex optimization problem has a unique solution as shown in Appendix B.1.

4.2.2 Assumptions

In order to use RandomMatrix Theory (RMT) tools, as shown in Appendix B, we make two
assumptions on the data distribution and the asymptotic regime. Following Wainwright
2019, we adopt a concentration hypothesis on the feature vectors x(t)i , which was shown
to be highly effective for analyzing machine learning problems (Couillet & Liao, 2022; Fe-
ofanov, Tiomoko, et al., 2023).

Assumption 4.2.1 (Concentrated Random Vector). We assume that there exist two con-
stantsC, c > 0 (independent of dimension d ) such that, for any task t , for any 1-Lipschitz
function f : RL → R, any feature vector x(t) ∈ X (t) verifies:

∀t > 0 : P(|f (x(t))− E[f (x(t))]| ≥ t) ≤ Ce−(t/c)2,
E[x(t)] = 0 and Cov[x(t)] = Σ(t).

In particular, we distinguish the following scenarios: x(t)i ∈ RL are concentrated when
they are (i) independent Gaussian random vectors with covariance of bounded norm, (ii)
independent random vectors uniformly distributed on the RL sphere of radius

√
L, and

most importantly (iii) any Lipschitz transformation φ(x(t)i ) of the above two cases, with
bounded Lipschitz norm. Scenario (iii) is especially pertinent for modeling data in realistic
settings. Recent research (Seddik et al., 2020) has demonstrated that images produced by
generative adversarial networks (GANs) are inherently qualified as concentrated random
vectors.

Next, we present a classical RMT assumption that establishes a commensurable rela-
tionship between the number of samples and dimension.

Assumption 4.2.2 (High-dimensional asymptotics). As L→∞, nt = O(L) and T =
O(1). More specifically, we assume that n/L

a.s.−→ c0 <∞ with n =
∑T

t=1 nt .

Although different from classical asymptotic where the number of samples is implicitly
assumed to be exponentially larger than the dimension, the high-dimensional asymptotic
finds many applications including telecommunications (Couillet & Debbah, 2011), finance
(Potters et al., 2005) and machine learning (Couillet & Liao, 2022; Tiomoko et al., 2020;
Feofanov, Tiomoko, et al., 2023).

– 85 –



Chapter 4

4.2.3 Discussions on the Assumptions.

On the zero-mean assumption. We would like to note that we are assuming that both
the noise ε and the feature x(t)i have zero mean. This is a common assumption in many
statistical models and it simplifies the analysis. However, this assumption is not restrictive.
In practice, if the data or the response variable are not centered, we can always preprocess
the data by subtracting the mean. This preprocessing step brings us back to the zero-mean
setting that we consider in our theoretical analysis.

On theAssumption 1. Data are concentrated randomvectors, meaning high-dimensional
data maintain stable under complex (Lipschitz) transformations. The strong performance
of neural networks on tasks like image recognition and NLP suggests that these mod-
els produce stable predictions. As Lipschitz transformations, they maintain controlled
distances between inputs, ensuring stability. Recent studies have demonstrated and ex-
perimentally confirmed that both real-world data and synthetically generated data using
GANs exhibit concentration properties, supporting this assumption. This makes our as-
sumption more realistic than traditional Gaussian assumptions, as it does not rely on spe-
cific hypotheses about the shape of the data distribution, but rather on the stability of
statistical properties after transformation. Consequently, analyzing a framework of con-
centrated random vectors is more theoretically challenging than using Gaussian assump-
tions and represents a key novelty of our theory.

On theAssumption 2. The dimensionL is of the same order of magnitude as the sample
size n. This joint growth captures data complexity better than assuming a fixed feature size
with increasing samples, which can oversimplify models. Our theory works for fixed L and
n, unbiased by specific parameter choices. The accuracy of empirical predictions depends

on bothL and n, with variance scaling asO
(
1√
nL

)
. LargerL and n reduce variance, making

empirical results more reliable and closer to theoretical values. Conversely, smaller L and
n increase variance, affecting single predictions. However, this scaling is still better than n

growing indefinitely with fixed L, where variance scales as O
(
1√
n

)
, leading to increased

bias.
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4.3 Main Theoretical Results

4.3.1 Estimation of the Performances

Given training data X ∈ Rn×L and response Y ∈ Rn×H, we define the training and test
risks as:

R∞train =
1

Tn
E
[
∥Y − g(X)∥22

]
, R∞test =

1

T

T∑
t=1

E
[
∥y(t) − g(x(t))∥22

]
,

with

g(x(t)) =
1

TL

(
e
[T ]
t ⊗ x(t)

)⊤
AZQY,

where we set:

Q =

(
Z⊤AZ

TL
+ ITL

)−1
, A =

(
Dγ + λ1T1⊤T

)
⊗ IL ∈ RTL×TL.

To analyzeR∞train andR∞test , we use a deterministic equivalent ofQ, denoted M̄, which ap-
proximatesQ in a linear form. This approach allows estimating key quantities like 1

L
tr(AQ)

using the coresolvent Q̃ =
(
A
1
2 ZZ⊤A

1
2

TL
+ ITL

)−1
.

Using Lemma 1 provided in the Appendix B.2.1, whose proofs are included in Appen-
dices B.2.2, B.2.3 and B.2.4, we establish the deterministic equivalents that allow us to
introduce our Theorem 4.3.1, characterizing the asymptotic behavior of both training and
testing risks.

Theorem 4.3.1 (Asymptotic test risk). Under the assumptions of concentrated random
vectors and high-dimensional asymptotics, the asymptotic test risk is given by:

R∞test =
tr
(
W⊤A−

1
2
¯̃Q2(A)A

−1
2W

)
T L︸ ︷︷ ︸

signal term

+
tr
(
Σn Q̄2

)
T L

+ tr
(
Σn
)

︸ ︷︷ ︸
noise terms

(ATR)

where ¯̃Q2(A) and Q̄2 are deterministic equivalents for specific matrix forms of Q̃ and Q.

We defer the full proof of this theorem to Appendix B.3.

4.3.2 Error Contribution Analysis

To gain theoretical insights, we analyze (ATR) consisting of the signal and the noise com-
ponents.
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Signal Term. The signal term can be further approximated, up to some constants as
tr(W⊤(AΣ+ I)−2W) with Σ =

∑T
t=1

nt
L
Σ(t). The matrix (AΣ+ I)−2 plays a crucial role

in amplifying the signal term tr(W⊤W), which in turn allows the test risk to decrease. The
off-diagonal elements of (AΣ + I)−2 amplify the cross terms (tr(W⊤vWt) for t ̸= v ), en-
hancing the multi-task aspect, while the diagonal elements amplify the independent terms
(∥Wt∥22). This structure is significant in determining the effectiveness of multi-task learn-
ing. Furthermore, both terms decrease with an increasing number of samples nt , smaller
values of γt , and a larger value of λ. The cross term, which is crucial for multi-task learn-
ing, depends on the matrix Σ−1t Σv . This matrix represents the shift in covariates between
tasks. When the features are aligned (i.e., Σ−1t Σv = IL), the cross term is maximized, en-
hancing multi-task learning. However, a larger Fisher distance between the covariances of
the tasks results in less favorable correlations for multi-task learning.

Noise term. Similar to the signal term, the noise term can be approximated, up to
some constants, as tr(ΣN(A−1 + Σ)−1). However, there is a major difference between
the way both terms are expressed in the test risk. The noise term does not include any
cross terms because the noise across different tasks is independent. In this context, only
the diagonal elements of the matrix are significant. This diagonal term increases with the
sample size and the value of λ. It is responsible for what is known as negative transfer. As
the diagonal term increases, it negatively affects the transfer of learning from one task to
another. This is a critical aspect to consider in multi-task learning scenarios.

4.3.3 Simplified Model for Clear Insights

In this section, we specialize the theoretical analysis to the simple case of two tasks (T = 2)
on the Appliance Energy dataset. The results are presented in Figure 4.1, confirming that
the test risk follows a convex curve, allowing the identification of an optimal value λ∗.
First, we assume that the tasks share the same identity covariance and that γ1 = γ2 ≡ γ.
Under these conditions, the test risk can be approximated, up to some constants, as

R∞test = DIL
(
∥W1∥22 + ∥W2∥22

)
+ CMTLW

⊤
1W2 +NNT tr

(
Σn
)

where the diagonal term (independent learning) DIL, the cross term (multi-task learning)
CMTL, and the noise term (negative transfer)NNT have closed-form expressions depending
on γ and λ:

DIL =
(c0(λ+ γ) + 1)

2 + c20λ
2

(c0(λ+ γ) + 1)2 − c20λ2
, CMTL =

−2c0λ(c0(λ+ γ) + 1)
(c0(λ+ γ) + 1)2 − c20λ2

NNT =
(c0(λ+ γ)

2 + (λ+ γ)− c0λ2)2 + λ2

((c0(λ+ γ) + 1)2 − c20λ2)
2

We recall that c0 has been defined in the Assumption 4.2.2. As previously mentioned, the
test risk is primarily composed of two terms: the signal term and the noise term, which
are in competition with each other. The more similar the tasks are, the stronger the signal
term becomes. In the following plot, we illustrate how this competition can influence
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the risk. Depending on the value of the parameter λ and the sample sizes, the risk can
either decrease monotonically, increase monotonically, or exhibit a convex behavior. This
competition can lead to an optimal value for λ, which interestingly has a simple closed-
form expression that can be obtained by deriving the R∞test w.r.t. λ as follows (see details
in Appendix B.4.4):

λ⋆ =
n

L
SNR−

γ

2
, with SNR =

∥W1∥22 + ∥W2∥22
tr
(
Σn
) +

W⊤1W2

tr
(
Σn
) .

(a) nL = 0.5

(b) nL = 1.5 (c) nL = 2.5

Figure 4.1: Test loss contributions DIL, CMTL, NNT across three sample size regimes. Test
risk exhibits decreasing, increasing, or convex shapes based on the regime. λ∗ from theory
are marked.

4.3.4 Comparison between Empirical and Theoretical Predictions

In this section, we compare the theoretical predictions with the empirical results on syn-
thetic data. Our experiment is based on a two-task setting (T = 2) defined as W1 ∼
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N (0, Ip) withW2 = αW1 +
√
1− α2W⊥1 . W⊥1 represents any vector orthogonal toW1

and α ∈ [0, 1]. This setting allows us to adjust the similarity between tasks through α.

Figure 4.2 shows a comparison of the theoretical and empirical classification errors for
different values of λ, highlighting the error-minimizing value of λ. Despite the relatively
small values of n and p, there is a very precise match between the asymptotic theory and
the practical experiment. This is particularly evident in the accurate estimation of the
optimal value for λ.

Figure 4.2: Empirical and theoretical train and test MSE as functions of the parameter λ
for different values of α. The smooth curves represent the theoretical predictions, while
the corresponding curves with the same color show the empirical results, highlighting that
the empirical observations indeed match the theoretical predictions.

4.4 Experimental Results

4.4.1 Relevance of the theoretical insights beyond the case of linear

models

While non-linearmodels are widely used, establishing their theoretical foundations is chal-
lenging. Therefore, we focused on linear models, which, despite their simplicity, provide
valuable insights into more complex models.

Our results show that test risk curves for non-linearmodels follow patterns predicted by
our theory. This is expected because non-linear models in time series forecasting typically
use a linear output layer for prediction. Thus, we can apply our theory to the inputs of this
final linear layer. This approach is valid due to data concentration and the Lipschitz nature
of neural networks, ensuring outputs of the non-linear part don’t deviate significantly from
the inputs.

Moreover, multivariate time series models often treat channels separately using uni-
variate methods, missing cross-channel information. Our results in Section 4.4.2 show

– 90 –



On Multi-Task Learning in Multivariate Time Series Forecasting

that our method surpasses univariate baselines by optimally regularizing with λ and γ,
supporting our theory’s applicability to non-linear models as the final linear layer effec-
tively leverages concentrated inputs.

Finally, our regularization approach differs from traditional cross-task regularizations
that use one task per dataset. We consider each prediction as a task and introduce γt
parameters alongside λ. These parameters enforce multivariate regularization and control
underfitting or overfitting per task. Thismethod is tractable since it’s applied at themodel’s
final layer.

The similarity between curves for non-linear and linear models indicates our findings
are robust; non-linear models also exhibit optimal regularization parameters, enhancing
performance in multivariate forecasting.

4.4.2 Application to Multivariate Time Series Forecasting

Our theoretical framework is applied in the context of Multivariate Time Series Forecast-
ing. We previously applied this framework in a linear setting, and now aim to evaluate its
empirical validity in the non-linear setting of neural networks. The results presented in
this section represent the best test MSE, assuming the ability to find the optimal lambda
value, which can be considered as an oracle scenario. A study of these limitations can be
found in Appendix B.8.

Motivation. Our approach is applied to the MTSF setting for several reasons. Firstly,
many models currently used are essentially univariate, where predictions for individual
series are simply concatenated without exploiting the multivariate information inherent
in traditional benchmarks. Given that these benchmarks are designed for multivariate
forecasting, leveraging multivariate information should yield better results. Secondly, our
theoretical framework can benefit this domain, as most predictive models use a linear layer
on top of the model to project historical data of length L for predicting the output of length
H. This characteristic aligns well with our method, making it a promising fit for enhancing
forecasting accuracy.

Our approach. We propose a novel method for MTSF by modifying the loss function
to incorporate both individual feature transformations ft and a shared transformation
f0. Each univariate-specific transformation ft is designed to capture the unique dynam-
ics of its respective feature, while f0 serves as a common transformation applied across
all features to capture underlying patterns shared among them. We consider a neural
network f with inputs X = [X(1),X(2), . . . ,X(T )], where T is the number of channels
and X(t) ∈ Rn×L. For a univariate model without MTL regularization, we predict Y =
[Y(1),Y(2), . . . ,Y(T )] = [f1(X

(1)), . . . , fT (X
(T ))] and Y(t) ∈ Rn×H. We compare these

models with their corresponding versions that include MTL regularization, formulated as:
f MTLt (X(t)) = ft(X

(t)) + f0(Y) with ft : Rn×L → Rn×H and f0 : Rn×HT → Rn×H. We
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define our regularized loss as follows:

L(X,Y) =
T∑
t=1

∥Y(t) − f MTLt (X(t))∥2F + λ∥f0(X)∥2F +
T∑
t=1

γt∥ft(X(t)∥2F , ∀t ∈ {1, . . . , T}.

where Y(t) are the true predictions, ft represents the univariate model for each channel
t , and λ is our regularization parameter, for which we have established a closed form in
the case of linear ft . f0 serves a role equivalent to W0, which was defined in our theoret-
ical study and allows for the regularization of the common part. This component can be
added at the top of a univariate model. The parameters γt enable the regularization of the
specialized parts ft .

In our setup, ft is computed in a similar way as in the model without regularization
and f0 is computed by first flattening the concatenation of the predictions of X(t), then
applying a linear projection leveraging commonmultivariate information before reshaping.
The loss function is specifically designed to balance fitting the multivariate series using f0
and the specific channels using ft . This approach enhances the model’s generalization
across various forecasting horizons and datasets.

Architectures with MTL Regularization. We implemented the univariate PatchTST,
DLinearU, and Transformer baselines with MTL regularization. Initially, we scale the in-
puts twice using RevIN normalization. The first scaling is applied to the univariate compo-
nents, and the second scaling is applied to the multivariate components. For each channel,
we then apply our model without MTL regularization. The outputs are concatenated along
the channel dimension, and this concatenation is flattened to form amatrix of shape (batch
size, H× T ), where H is the prediction horizon and T is the number of channels. We then
learn a square matrixW of shape (H×T )× (H×T ) for projection and reshape the result
to obtain an output of shape (batch size, H, T ). This method can be applied on top of any
univariate model.

Datasets. We conduct our experiments on 3 publicly available datasets of real-world
time series, widely used for multivariate long-term forecasting (H. Wu et al., 2021; S.-A.
Chen et al., 2023; Yuqi Nie et al., 2023). The 2 Electricity Transformer Temperature datasets
ETTh1, and ETTh2 (H. Zhou et al., 2021) contain the time series collected by electricity
transformers from July 2016 to July 2018. Whenever possible, we refer to this set of 2
datasets as ETT. Weather (Max Planck Institute, 2021) contains the time series of meteoro-
logical information recorded by 21weather indicators in 2020. It should be notedWeather is
large-scale datasets. The ETT datasets can be downloaded here while the Weather dataset
can be downloaded here. Table 4.1 summarizes the characteristics of the datasets used in
our experiments. The results of our 3 baselines on ETTh1 can be found in Appendix B.7.

Training parameters. The training/validation/test split is 12/4/4 months on the ETT
datasets and 70%/20%/10% on the Weather dataset. We use a look-back window L =
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Table 4.1: Characteristics of the multivariate time series datasets used in our experiments.

Dataset ETTh1/ETTh2 Weather

# features 7 21

# time steps 17420 52696

Granularity 1 hour 10 minutes

336 for PatchTST andL = 512 for DLinearU and Transformer, using a sliding windowwith
stride 1 to create the sequences. The training loss is the MSE. Training is performed during
100 epochs and we use early stopping with a patience of 5 epochs. For each dataset, base-
lines, and prediction horizonH ∈ {96, 192, 336, 720}, each experiment is run 3 times with
different seeds, and we display the average of the test MSE over the 3 trials in Table 4.3.

Table 4.2: Learning rates used in our experiments.

Dataset ETTh1/ETTh2 Weather

Learning rate 0.001 0.0001

Results. We present experimental results on different forecasting horizons, using 3 com-
mon benchmark MTSF datasets. Our models include PatchTST (Yuqi Nie et al., 2023),
known to be on par with state-of-the-art inMTSFwhile being a univariatemodel, a univari-
ate DLinear version called DLinearU compared to its multivariate counterpart DLinearM
(Zeng,M. Chen, et al., 2023), and a univariate Transformer (Ilbert et al., 2024) with temporal-
wise attention compared to the multivariate state-of-the-art models SAMformer (Ilbert et
al., 2024) and iTransformer (Yong Liu et al., 2024). Table 4.3 provides a detailed comparison
of the test mean squared errors (MSE) for different MTSF models, emphasizing the impact
of MTL regularization. Models with MTL regularization are compared to their versions
without regularization, as well as SAMformer and iTransformer.

Adding MTL regularization improves the performance of PatchTST, DLinearU, and
Transformer in most cases. When compared to state-of-the-art multivariate models, the
MTL-regularized models are often competitive. SAMformer is outperformed by at least
one MTL-regularized method per horizon and dataset, except for ETTh1 with horizons of
336 and 720. iTransformer is consistently outperformed by at least one MTL-regularized
method regardless of the dataset and horizon.

The best performing methods are PatchTST and DLinearU with MTL regularization.
These models not only outperform their non-regularized counterparts, often significantly,
as shown by Student’s t-tests with a p-value of 0.05, but also surpass state-of-the-art mul-
tivariate models like SAMformer and Transformer. This superior performance is indicated
by the bold values in the table.
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Table 4.3: MTL regularization results. Algorithms marked with † are state-of-the-art multi-
variate models and serve as baseline comparisons. All others are univariate. We compared
the models with MTL regularization to their corresponding versions without regulariza-
tion. Each MSE value is derived from 3 different random seeds. MSE values marked with
* indicate that the model with MTL regularization performed significantly better than its
version without regularization, according to a Student’s t-test with a p-value of 0.05. MSE
values are in boldwhen they are the best in their row, indicating the top-performing mod-
els.

Dataset H
with MTL regularization without MTL regularization

PatchTST DLinearU Transformer PatchTST DLinearU DLinearM Transformer SAMformer† iTransformer†

ET
Th

1

96 0.385 0.367
∗ 0.368 0.387 0.397 0.386 0.370 0.381 0.386

192 0.422 0.405
∗ 0.407∗ 0.424 0.422 0.437 0.411 0.409 0.441

336 0.433∗ 0.431 0.433 0.442 0.431 0.481 0.437 0.423 0.487

720 0.430∗ 0.454 0.455∗ 0.451 0.428 0.519 0.470 0.427 0.503

ET
Th

2

96 0.291 0.267
∗ 0.270 0.295 0.294 0.333 0.273 0.295 0.297

192 0.346∗ 0.331
∗ 0.337 0.351 0.361 0.477 0.339 0.340 0.380

336 0.332
∗ 0.367 0.366∗ 0.342 0.361 0.594 0.369 0.350 0.428

720 0.384
∗ 0.412 0.405∗ 0.393 0.395 0.831 0.428 0.391 0.427

W
ea
th
er

96 0.148 0.149∗ 0.154∗ 0.149 0.196 0.196 0.170 0.197 0.174

192 0.190 0.206∗ 0.198∗ 0.193 0.243 0.237 0.214 0.235 0.221

336 0.242
∗ 0.249∗ 0.258 0.246 0.283 0.283 0.260 0.276 0.278

720 0.316
∗ 0.326∗ 0.331 0.322 0.339 0.345 0.326 0.334 0.358

Finally, MTL regularization enhances the performance of univariate models, making
them often competitive with state-of-the-art multivariate methods like SAMformer and
iTransformer. This approach seems to better capture shared dynamics among tasks, lead-
ing to more accurate forecasts.

4.5 Conclusions and Future Work

In this chapter, we formulated the problem of multivariate time series forecasting from
the perspective of multi-task learning. This innovative approach relies on an optimization
strategy that enhances individual channel predictions by effectively leveraging shared in-
formation among them. We developed a closed-form analytical solution for linear models
and presented a thorough statistical analysis based on randommatrix theory. This analysis
highlighted the conditions under which a positive transfer of information between tasks
can be achieved while avoiding negative transfer scenarios.

Our theoretical results provide a precise interpretation of the mechanisms involved in
multi-task learning applied to time series, clearly establishing the role of regularization
parameters in balancing shared and task-specific contributions. In particular, we demon-
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(g) ETTh2 - Horizon 720
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Figure 4.3: Results for datasets ETTh2 and Weather on the PatchTST baseline, averaged
across 3 seeds for each gamma and lambda setting.
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(f) Weather - Horizon 336
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(g) ETTh2 - Horizon 720
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Figure 4.4: Results for datasets ETTh2 and Weather on the DLinearU baseline., averaged
across 3 seeds for each gamma and lambda setting.
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Figure 4.5: Results for datasets ETTh2 and Weather on the Transformer baseline, averaged
across 3 seeds for each gamma and lambda setting.
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strated the existence of an optimal parameter, explicitly computable based on data statis-
tics, which maximizes the benefits of the multi-task framework.

Empirically, our method significantly improved the performance of initially univariate
models, such as PatchTST andDLinear, by exploiting the inherent inter-channel dependen-
cies in multivariate data. Remarkably, these models, when regularized with our approach,
achieve performance comparable to state-of-the-art multivariate methods such as SAM-
former and iTransformer, while maintaining simplicity, interpretability, and computational
efficiency.

This work opens promising perspectives for extending our approach to complex non-
linear models, where the final linear structure allows for an efficient application of our the-
oretical principles. More broadly, this chapter underscores the fundamental importance of
considering multivariate forecasting as a multi-task learning problem, encouraging a re-
thinking of current methods by explicitly integrating inter-channel interactions to achieve
better predictive performance.
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On Adapting Foundation Models to Mul-
tivariate Time Series Classification

Summary. Foundation models, while highly effective, are often resource-intensive, re-
quiring substantial inference time and memory. This chapter addresses the challenge of
making these models more accessible with limited computational resources through meta-
channel learning approaches. Our goal is to enable users to run large pre-trained founda-
tion models on standard GPUs without sacrificing performance. We propose a latent space
compression strategy that restructures the feature space while preserving essential tem-
poral information. Surprisingly, we show that reducing the latent space to only 2.10% of
its original size retains 96.15% of the classification accuracy of the full-sized model. To
achieve this, we investigate both classical methods and neural network-based adapters for
optimizing multivariate time series representations. Our experiments demonstrate up to
a 10× speedup compared to the baseline model without performance degradation, while
allowing up to 4.5× more datasets to fit on a single GPU. This enhancement makes foun-
dation models more practical and scalable for real-world applications.

5.1 Introduction

Foundation models have significantly advanced fields such as NLP (Josh Achiam et al.,
2023; Touvron, Lavril, Izacard, Martinet, Lachaux, Lacroix, Rozière, Goyal, Hambro, Azhar,
et al., 2023b) and computer vision (Dosovitskiy et al., 2021b) by leveraging extensive pre-
training on large datasets to create highly adaptable representations. Inspired by these suc-
cesses, recent research has sought to extend the foundation model paradigm to time series
analysis, creating Time Series Foundation Models (TSFMs) (Goswami et al., 2024; Yihang
Wang et al., 2024; Garza & Mergenthaler-Canseco, 2023; C. Lin et al., 2024). These mod-
els are pre-trained on vast, diverse datasets and then adapted to downstream tasks with
minimal additional data, thereby greatly reducing the need for extensive labeled datasets.
In contrast, classical approaches for MTS classification, including Dynamic Time Warp-
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ing (Salvador & Chan, 2007b), kernel methods, shapelets (Lines, LukeMDavis, et al., 2012),
tree-based models (Houtao Deng et al., 2013), and dictionary-based algorithms (J. Lin,
Keogh, L. Wei, et al., 2007; J. Lin, Khade, et al., 2012), often struggle with high-dimensional
data. Deep learningmethods such as ROCKET (Dempster et al., 2020b) andMulti-ROCKET
show promise but still fail to address channel interdependencies efficiently.

TSFMs have been proposed for various specialized tasks, including forecasting (Garza
& Mergenthaler-Canseco, 2023; Rasul, Arjun Ashok, et al., 2023; Yihang Wang et al., 2024),
classification (C. Lin et al., 2024; Feofanov, S. Wen, et al., 2025), and general-purpose mod-
eling (T. Zhou, Peisong Niu, et al., 2023; Goswami et al., 2024). However, a major limitation
remains their computational complexity, particularly when applied tomultivariate time se-
ries containing numerous channels (W. W. Wei, 2018; Bagnall, Dau, et al., 2018b). Current
TSFMs typically process channels independently, causing severememory consumption and
excessive runtime, especially under constrained computational resources such as a single
standard GPU.

Conversely, we hypothesize that processing multivariate time series channels indepen-
dently is suboptimal. Some channels may encode redundant information, and it is possible
to identify a lower-dimensional set of transformed channels that retain most of the useful
signal while reducing computational cost. This reformulation allows us to achieve a signif-
icant reduction in inference time and memory footprint, making foundation models more
practical for large-scale applications. To test this hypothesis, we introduce dimensionality
reduction techniques, enabling TSFMs to operate efficiently without sacrificing predictive
performance.

In this chapter, we address these critical computational and scalability issues by intro-
ducing dimensionality reduction techniques specifically adapted to TSFMs formultivariate
classification tasks. Our objective is twofold: (i) reduce the computational resources re-
quired to fine-tune and deploy foundation models, and (ii) preserve classification accuracy
through carefully designed adapters that compress the latent feature space effectively. To
achieve these goals, we explore various compression methods, including Principal Com-
ponent Analysis (PCA), Singular Value Decomposition (SVD), Random Projection (Rand
Proj), Variance-based Feature Selection (VAR), and neural-network-based linear combiners
(lcomb). Unlike traditional dimensionality reduction applied to static data, applying these
techniques to temporal data requires careful consideration of temporal dependencies and
channel correlations.

We validate our approach extensively on twelve diverse multivariate datasets from the
UEA archive (Bagnall, Dau, et al., 2018b), using two prominent TSFMs: MOMENT (Goswami
et al., 2024), a large-scale transformer-based model trained with masked reconstruction,
andMantis (Feofanov, S.Wen, et al., 2025), a smaller, contrastively trained vision transformer-
based model. Our experiments demonstrate that the dimensionality reduction techniques
yield significant computational improvements, including a tenfold inference speedup and
the capacity to handle up to 4.5×more datasets per GPU, without significant performance
loss. Table 5.1 illustrates the severe computational bottlenecks encountered when applying
Mantis and MOMENT directly to multivariate datasets without dimensionality reduction,

– 100 –



On Adapting Foundation Models to Multivariate Time Series Classification

Table 5.1: Average accuracy over 3 runs under full fine-tuning without an adapter (i.e.,
using all initial channels).

Model Duck Face Finger Hand Heart Insect Vowels Motor NATOPS PEMS Phoneme SpokeA
Mantis COM COM COM 0.401±0.021 COM COM 0.981±0.005 COM 0.937±0.012 COM 0.342±0.002 0.987±0.001

MOMENT COM COM COM 0.356±0.016 COM COM 0.925±0.002 COM TO COM TO TO

as indicated byCOM (CUDAOut ofMemory error) andTO (TimeOut) entries, emphasizing
the necessity of our proposed adapters.

5.2 Problem Formulation

LetN denote the number of samples, L the number of time steps,D the number of channels
in each multivariate time series, and D′ the reduced number of dimensions after applying
dimensionality reduction (D′ ≤ D).

Objective. Our goal is to enable efficient multivariate time series classification using
pre-trained models while preserving high classification accuracy. We focus on achieving
rapid fine-tuningwithin a 2-hour window on a single GPUwithout significant performance
degradation. To this end, we explore various dimensionality reduction techniques, which
preprocess the input data before being processed by foundation models. We then evaluate
different fine-tuning strategies to optimize performance under computational constraints.

Challenges. Table 5.1 presents the accuracy results of two TSFMs, Mantis and MO-
MENT, on a range of multivariate time series datasets under full fine-tuning without the
use of any adapter, i.e., without dimensionality reduction. Notably, the results indicate that
most of the foundation models encounter severe computational limitations when applied
to multivariate data on standard hardware (NVIDIA Tesla V100-32GB GPU), as indicated
by COM (CUDA Out of Memory error) and TO (2 hours Time Out) entries. These computa-
tional constraints underscore the difficulty of directly applying existing foundation models
to multivariate time series with numerous channels, often leading to excessive resource
consumption and failures to complete the fine-tuning process. This evidence motivates
our exploration of dimensionality reduction techniques, which aim to alleviate these com-
putational bottlenecks and enable foundation models to handle multivariate data more
effectively without compromising accuracy.

Problem Definition. Let X ∈ RL×D denote a multivariate time series with L time
steps and D channels, and let y ∈ Y = {1, . . . , K} be the corresponding class label for a
K-class classification task. We assume that a pre-trained foundationmodel f encodes each
time series channel independently to an embedding vector of size p. AssumingD large, we
introduce an adapter that performs latent space compression by mapping the original D
channels onto D′ ≤ D channels to enable efficient processing of high-dimensional data:

g : RL×D → RL×D′.

We consider a set G of candidate dimensionality reduction techniques (e.g., PCA, trun-
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cated SVD, random projection, or neural-network–based linear combiners). The overall
classification pipeline is then given by

H(X) = h ◦ f ◦ g(X),

where h : RD′×p → Y is a classification head. Our goal is to maximize the classification
accuracy under different fine-tuning strategies while respecting a strict resource budget
(i.e., fine-tuning must be finished within 2 hours on a single GPU). Xi denotes the i-th
multivariate time series.

Case 1: Head Fine-Tuning

This baseline configuration employs the identity mapping gid : RL×D → RL×D, thus pass-
ing all D channels directly to the foundation model f . Only the classification head h is
fine-tuned, providing a reference scenario without dimension reduction where :

H(X) = hφ ◦ f ◦ gid(X) = h ◦ f (X)

Thus, the optimization objective is:

max
φ

1

N

N∑
i=1

I
(
hφ ◦ f (Xi) = yi

)
,

and the constraint that this fine-tuning is completed within two hours on a single GPU.

Case 2: Adapter + Head Fine-Tuning

In this setting, the pre-trained foundation model f is kept frozen. The adapter g is pa-
rameterized by θ (denoted as gθ) and the classification head h is parameterized by φ. The
pipeline is defined as

H(X) = hφ ◦ f ◦ gθ(X)

The optimization problem is then:

max
θ, φ

1

N

N∑
i=1

I
(
hφ ◦ f ◦ gθ(Xi) = yi

)
,

subject to:

gθ : RL×D → RL×D
′
, D′ ≤ D and gθ ∈ G

under the same resource constraints.
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Case 3: Full Fine-Tuning

In this scenario, the foundation model f is parameterized by ψ and denoted as fψ, so that
the entire pipeline is fine-tuned. Keeping both the parameterized adapter and head, the
pipeline becomes:

H(X) = hφ ◦ fψ ◦ gθ(X)
The corresponding optimization problem is:

max
θ,ψ, φ

1

N

N∑
i=1

I
(
hφ ◦ fψ ◦ gθ(Xi) = yi

)
,

subject to the same mapping constraint:

gθ : RL×D → RL×D
′
, D′ ≤ D and gθ ∈ G

and the same resource constraint (two hours on a single GPU).

In summary, three distinct approaches are investigated: (1) relying on the identity
mapping and training only the head , (2) freezing f while fine-tuning the adapter and head
and (3) fully fine-tuning {gθ, fψ, hφ}. Our primary objective is to reduce channels from D

toD′without compromising classification accuracy, while adhering to strict computational
limits.

5.3 Proposed Approach

To effectively mitigate computational bottlenecks encountered by foundation models in
multivariate time series classification, we propose a latent space compression approach.
As shown in Figure 5.1, this approach introduces an adapter function gθ : RL×D → RL×D

′

prior to the foundation model f . Our goal is to significantly reduce the dimensionality D
of input time series to a smaller latent dimension D′, while preserving critical temporal
and channel-wise information required for classification. We explore several candidate
dimensionality reduction techniques, detailed as follows:

Principal Component Analysis (PCA). seeks to find an orthogonal basis of principal
components where a few components capture most of the data’s variance. Applying PCA
to 3D matrices (N,L,D) poses challenges. A common approach reshapes the data into
(N, T × D) and projects it to (N,L × D′), but this disrupts the temporal structure. Ad-
ditionally, when N ≪ L × D, PCA becomes computationally unstable. To address this,
we reshape the data to (N × L,D), allowing PCA to focus on correlations between chan-
nels over all time steps, effectively capturing spatial correlations while preserving temporal
information. The learned rotation matrixW ∈ RD′×D linearly combines the original chan-
nels into a lower-dimensional space, applied consistently across all time steps (Pearson,
1901; Jolliffe, 2002).
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Truncated Singular Value Decomposition (SVD). Truncated SVD directly decom-
poses the data without mean-centering, extracting the D′ most significant singular com-
ponents. This approach provides a numerically stable alternative to PCA, effectively cap-
turing the primary structure in the original high-dimensional space (Golub & Van Loan,
2013).

Random Projection (Rand Proj). This approach uses randomly-generated projection
matrices to achieve dimensionality reduction efficiently. Unlike PCA or SVD, random pro-
jections do not aim to preserve maximum variance but offer rapid computation suitable
for large-scale settings (Bingham & Mannila, 2001).

Variance-Based Feature Selection (VAR). VAR retains only the D′ channels with the
highest variance across samples and time steps, discarding low-variance features assumed
less informative for classification (Guyon & Elisseeff, 2003).

LinearCombiner (lcomb). Wepropose a learnable neural-network-based adapter, which
combines original channels into newmeta-channels through a learned weight matrixW ∈
RD×D′ . Contrary to classical methods, this approach optimizes channel combinations di-
rectly using supervised learning. A top-k variant further sparsifies the matrixW, retaining
only the largest k weights per meta-channel for stability and improved generalization.

Input X Adapter gθ
Frozen
Model f

Head hφ ŷ

(a) Frozen f , fine-tune gθ & hφ.

Input X Adapter gθ
Trainable
Model fψ

Head hφ ŷ

(b) Fine-tune gθ, fψ & hφ.

Input X
Identity
gid

Foundation
Model f

Head hφ ŷ

(c) No adapter, fine-tune only hφ.

Figure 5.1: Three fine-tuning scenarios in which each adapter g is selected from G =
{PCA,Truncated SVD,Rand Proj,VAR, lcomb}.

This comprehensive exploration of adapters aims to identify robust dimensionality re-
duction methods that significantly lower computational complexity while preserving high
accuracy in downstream classification tasks.
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Table 5.2: Performance comparison between different adapter configurations for MO-
MENT and Mantis foundation models with D′ = 5. The best performance of each
adapter+head method is in bold; the second best in italic. Results for fine-tuning head
only given for reference.

Dataset Model
head adapter+head

no adapter PCA SVD Rand_Proj VAR lcomb lcomb_top_k

DuckDuckGeese
MOMENT 0.460±0.016 0.627±0.023 0.667±0.012 0.500±0.040 0.407±0.012 0.427±0.046 0.393±0.114

Mantis 0.420±0.020 0.558±0.023 0.600±0.032 0.487±0.023 0.400±0.060 0.360±0.020 0.393±0.031

FaceDetection
MOMENT 0.623±0.006 0.567±0.002 0.566±0.001 0.552±0.014 0.555±0.001 TO TO
Mantis 0.595±0.004 0.554±0.001 0.551±0.007 0.533±0.004 0.539±0.007 0.548±0.008 0.550±0.008

FingerMovement
MOMENT 0.573±0.012 0.593±0.032 0.573±0.012 0.573±0.025 0.613±0.021 0.573±0.032 0.540±0.017

Mantis 0.627±0.015 0.593±0.044 0.530±0.030 0.570±0.075 0.582±0.040 0.580±0.020 0.567±0.046

HandMovementDirection
MOMENT 0.401±0.008 0.410±0.043 0.365±0.036 0.405±0.041 0.369±0.039 0.378±0.047 0.414±0.008

Mantis 0.342±0.021 0.396±0.021 0.351±0.089 0.329±0.083 0.329±0.031 0.320±0.034 0.320±0.028

Heartbeat
MOMENT 0.740±0.003 0.732±0.000 0.732±0.005 0.756±0.005 0.725±0.006 0.737±0.005 0.737±0.013
Mantis 0.811±0.010 0.766±0.005 0.737±0.012 0.776±0.013 0.780±0.010 0.748±0.006 0.779±0.014

InsectWingbeat
MOMENT 0.284±0.003 0.239±0.003 0.224±0.003 0.193±0.027 0.195±0.004 0.167±0.014 0.213±0.010
Mantis 0.614±0.005 0.344±0.013 0.352±0.010 0.333±0.035 0.238±0.012 0.171±0.013 0.354±0.041

JapaneseVowels
MOMENT 0.885±0.002 0.801±0.009 0.803±0.003 0.796±0.011 0.734±0.008 0.797±0.035 0.819±0.027

Mantis 0.979±0.006 0.922±0.009 0.897±0.012 0.902±0.008 0.885±0.010 0.798±0.070 0.816±0.027

MotorImagery
MOMENT 0.643±0.015 0.590±0.010 0.607±0.012 0.567±0.032 0.550±0.010 0.583±0.015 0.593±0.025
Mantis 0.600±0.036 0.593±0.025 0.590±0.017 0.577±0.029 0.607±0.025 0.557±0.045 0.607±0.055

NATOPS
MOMENT 0.872±0.011 0.776±0.008 0.739±0.017 0.774±0.032 0.813±0.020 0.596±0.017 0.769±0.031

Mantis 0.944±0.011 0.874±0.014 0.820±0.012 0.852±0.038 0.850±0.035 0.787±0.003 0.826±0.036

PEMS-SF
MOMENT 0.834±0.026 0.678±0.007 0.511±0.022 0.644±0.027 0.611±0.015 0.740±0.010 0.697±0.013
Mantis 0.923±0.023 0.674±0.032 0.640±0.045 0.615±0.023 0.615±0.055 0.584±0.025 0.594±0.065

PhonemeSpectra
MOMENT 0.234±0.001 0.234±0.002 0.212±0.002 0.245±0.003 0.228±0.004 TO TO
Mantis 0.296±0.003 0.270±0.003 0.259±0.001 0.293±0.002 0.294±0.004 0.279±0.002 0.286±0.001

SpokenArabicDigits
MOMENT 0.977±0.001 0.972±0.000 0.978±0.000 0.961±0.008 0.935±0.002 TO TO
Mantis 0.940±0.003 0.962±0.003 0.933±0.001 0.879±0.004 0.946±0.003 0.834±0.019 0.873±0.019

Avg Ratio to head only
MOMENT 1.000 0.973 0.939 0.930 0.893 0.870 0.904
Mantis 1.000 0.950 0.920 0.900 0.882 0.823 0.875

5.4 Experimental Evaluation

Experimental Setup. All experimentswere conducted using anNVIDIA Tesla V100GPU
(32GB) with a strict runtime constraint of two hours per fine-tuning task. Models exceed-
ing these limits are reported as either COM (CUDA Out-of-Memory) or TO (Time-Out).

Foundation Models. We evaluate two representative TSFMs:

• MOMENT (Goswami et al., 2024): A large-scale transformer-basedmodel pre-trained
via masked reconstruction (341M parameters).

• Mantis (Feofanov, S. Wen, et al., 2025): A smaller Vision Transformer (ViT)-based
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model pre-trained via contrastive learning (8M parameters).

Datasets. This study draws on 12 UEA datasets (Bagnall, Dau, et al., 2018b), each con-
taining at least 10 channels, to ensure that dimensionality reduction (fromD toD′) confers
a tangible advantage. The UEA archive comprises 30 multivariate datasets, but those with
fewer than 10 channels generally derive limited benefit from such reduction. While our
method is applicable to anyD, it provides the greatest impact whenD is sufficiently large.
The experimental results presented in this work are based on a diverse set of datasets,
whose main characteristics are summarized in Table 5.3. These datasets span a variety of
domains and tasks, offering a comprehensive evaluation of the fine-tuning methods un-
der consideration. For instance, the datasets include time-series data from physiological
measurements (e.g., Heartbeat,MotorImagery), sensor readings (e.g., PEMS-SF ), and acous-
tic signals (e.g., PhonemeSpectra, SpokenArabicDigits). The number of channels, sequence
lengths, and class distributions vary significantly across datasets, ensuring that the results
generalize across different data modalities and problem settings. In the case of the In-
sectWingbeat dataset, we specifically subsampled 1000 examples from the original training
set (which contains 30,000 examples) and 1000 from the original test set (of 20,000 exam-
ples) to reduce computational overhead while maintaining sufficient variety in the data
for robust model evaluation. Each dataset was carefully chosen to challenge the models
across different feature spaces, class imbalances, and temporal dependencies. For exam-
ple, the JapaneseVowels dataset focuses on speaker classification based on vowel sounds,
while the DuckDuckGeese dataset involves distinguishing animal sounds with varying lev-
els of complexity in terms of sequence length and channel dimensionality. By including
these datasets, we ensure that the evaluation framework captures the performance of fine-
tuning methods across a wide spectrum of classification tasks.

Table 5.3: Main characteristics of the considered datasets.

Dataset Train Size Test Size # of channels Sequence Len # of classes

DuckDuckGeese (Duck) 60 40 1345 270 5
FaceDetection (Face) 5890 3524 144 62 2
FingerMovements (Finger) 316 100 28 50 2
HandMovementDirection (Hand) 320 147 10 400 4
Heartbeat (Heart) 204 205 61 405 2
InsectWingbeat (Insect) 1000 1000 200 78 10
JapaneseVowels (Vowels) 270 370 12 29 9
MotorImagery (Motor) 278 100 64 3000 2
NATOPS 180 180 24 51 6
PEMS-SF (PEMS) 267 173 963 144 7
PhonemeSpectra (Phoneme) 3315 3353 11 217 39
SpokenArabicDigits (SpokeA) 6599 2199 13 93 10
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Definitions. We now define the terms "head" and "adapter," which are subsequently
used depending on the fine-tuning scenario. The head is a linear classification layer added
to the output of the foundation model, while the adapter is inserted upstream of the foun-
dation model.

Full Fine-Tuning Regime. We first show that full fine-tuning without adapters leads
to errors such as Time-Out (TO) or Cuda Out of Memory (COM), given our computational
and time constraints. On the few datasets that meet our requirements, we compared the
results of full fine-tuning without adapters with those of head-only fine-tuning with an
adapter to assess whether fine-tuning the entire foundation model is worthwhile. The
results indicate that it is not. For the Hand dataset, the average performance is 0.401 for
Mantis and 0.356 forMOMENTwith full fine-tuningwithout adapters, whereas head-only
fine-tuning yields 0.401 and 0.342, respectively, with a high variance of 0.02 forMOMENT
across different seeds. This clearly demonstrates that full fine-tuning is unnecessary for
this dataset. Finally, on the Vowels dataset—the second and final dataset for which both
models meet our requirements—Mantis andMOMENT achieve performances of 0.981 and
0.925, respectively, with full fine-tuningwithout adapters, and 0.979 and 0.885when fine-
tuning only the head. While Mantis shows similar performance under both regimes, full
fine-tuning slightly outperforms head-only fine-tuning for MOMENT. However, given that
MOMENT consists of 341M parameters, full fine-tuning incurs a significant computational
cost, which is reflected in the fact that out of the 12 datasets considered, only two meet
our requirements for MOMENT without errors as shown in Table 5.1.

Head Only vs Adapter+Head. We subsequently focus on comparing head-only fine-
tuning with adapter+head fine-tuning. While full fine-tuning is prohibitively expensive,
and the trade-off between computational resources and results appears to favor head-only
fine-tuning, why then consider adapter+head fine-tuning? The answer is twofold: not only
does adapter+head fine-tuning preserve the baseline performance of head-only fine-tuning
at an average of 97.15% across both models, but it also reduces the fine-tuning time by 10×
for MOMENT and approximately 2× for Mantis. In summary, we first demonstrate that
full fine-tuning without adapters is too costly, making head-only fine-tuning the preferable
option when comparing these two approaches. We then show that there is no statistically
significant difference in performance between head-only fine-tuning and adapter+head
fine-tuning, as evidenced by the statistical tests in Figure 5.2, which reveal a single cluster
encompassing all adapter methods as well as the "No Adapter" configuration. Meanwhile,
the running time is drastically reduced, as highlighted in Figure 5.3. Detailed quantitative
results are presented in the following paragraph.

Results. We present an experimental comparison of multiple adapters when fine-tuning
both the adapter and the head of a foundation model. We evaluate MOMENT and Man-
tis on twelve multivariate time series datasets from the UEA archive with more than ten
features, reducing the data from an average of 240 channels to 5. Rather than discarding
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channels, these adapters construct new metachannels through linear or nonlinear trans-
formations, thereby retaining important information in a significantly lower-dimensional
space ( 5

240
≈ 2.08% of the original dimension). Remarkably, the PCA-based adapter pre-

serves on average 97.30% of the accuracy of the no-adapter configuration for MOMENT
and 95.00% for Mantis, despite this drastic dimensionality reduction (see Table 5.2).

We also report results for the baseline scenario in which only the classification head
is fine-tuned (i.e., without any adapter). As shown in Table 5.2, accompanied by statisti-
cal tests in Figure 5.2, there is no statistically significant difference among the methods
on average over all datasets, including the head-only baseline. Nevertheless, Figure 5.3
demonstrates that using adapters drastically reduces computation time: for MOMENT,
they are on average over ten times faster than the no-adapter setting, and for Mantis, they
yield a two-fold speedup. An exception is the Linear Combiner (lcomb) adapter, a deep
learning-based model that requires invoking the foundation model at each fine-tuning
step. In contrast, other (non-deep) methods only transform the data once into embeddings,
then train the classification head without repeatedly running the foundation model. This
significantly reduces runtime compared to approaches such as lcomb.

Notably, Table 5.2 indicates that the no-adapter strategy outperforms on certain datasets,
suggesting that the best dimensionality may vary per dataset. Consequently, more sophis-
ticated adapters may be needed for robust dimension reduction in challenging cases.

Finally, by comparing results in full fine-tuning results with Table 5.1, we now observe
that lcomb now enables fine-tuning on 12/12 datasets forMantis and 9/12 forMOMENT on
a single GPU, whereas full fine-tuning only accommodated 5 and 2 datasets, respectively.
This corresponds to a 2.4× increase for Mantis and a 4.5× increase for MOMENT in terms
of the number of datasets that fit in a single GPU, within two hours.

Table 5.4: Performance comparison between fine-tuning methods with different adapter
configurations for the MOMENT foundation model

Dataset
adapter+head

PCA Scaled PCA Patch_8 Patch_16

DuckDuckGeese 0.667±0.012 0.533±0.031 0.567±0.031 0.573±0.031

FaceDetection 0.566±0.001 COM 0.582±0.003 0.558±0.004

FingerMovement 0.573±0.012 0.563±0.032 0.633±0.012 0.563±0.015

HandMovementDirection 0.365±0.036 0.356±0.043 0.464±0.021 0.383±0.021
Heartbeat 0.732±0.005 0.728±0.003 0.738±0.007 0.741±0.013

InsectWingbeat 0.224±0.003 0.239±0.003 0.458±0.002 0.459±0.004

JapaneseVowels 0.803±0.003 0.723±0.020 0.967±0.002 0.963±0.002

MotorImagery 0.607±0.012 0.590±0.020 0.577±0.006 0.597±0.015

NATOPS 0.739±0.017 0.731±0.012 0.857±0.003 0.915±0.003

PEMS-SF 0.511±0.022 0.678±0.007 0.719±0.012 0.696±0.018

PhonemeSpectra 0.212±0.002 0.227±0.008 0.224±0.001 0.186±0.001

SpokenArabicDigits 0.978±0.000 0.963±0.001 0.967±0.001 0.956±0.001
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Table 5.5: Performance comparison between fine tuning methods with different adapter
configurations for Mantis foundation model

Dataset
adapter+head

PCA Scaled PCA Patch_8 Patch_16

DuckDuckGeese 0.558±0.023 0.522±0.023 0.467±0.031 0.440±0.035

FaceDetection 0.554±0.001 0.550±0.010 0.551±0.003 0.547±0.007

FingerMovement 0.593±0.044 0.583±0.023 0.530±0.036 0.570±0.053

HandMovementDirection 0.367±0.042 0.327±0.056 0.396±0.021 0.369±0.021
Heartbeat 0.736±0.010 0.734±0.014 0.766±0.005 0.763±0.018

InsectWingbeat 0.344±0.013 0.268±0.005 0.287±0.011 0.266±0.006

JapaneseVowels 0.890±0.008 0.865±0.016 0.922±0.009 0.921±0.011

MotorImagery 0.567±0.006 0.552±0.045 0.593±0.025 0.573±0.065

NATOPS 0.837±0.012 0.840±0.017 0.874±0.014 0.870±0.008

PEMS-SF 0.584±0.010 0.613±0.025 0.634±0.013 0.674±0.032

PhonemeSpectra 0.270±0.003 0.262±0.008 0.234±0.002 0.205±0.006

SpokenArabicDigits 0.962±0.003 0.952±0.003 0.921±0.006 0.899±0.002

5.5 Qualitative Study

Hyperparameter Sensitivity of PCA. In this experiment, we implemented a variant
of PCA called Patch PCA. Unlike the traditional approach where the input time series of
shape (N,L,D) is reshaped into (N × L,D) before applying PCA, our method reshapes
the input into (N × np, pws × D), where np represents the number of patches in the se-
quence and pws refers to the patch window size. The case where pws = 1 corresponds
to the standard PCA approach. We compare the results across different patch window
sizes (pws = 1, 8, 16). These experiments show no clear pattern in performance across
the different patch sizes, suggesting that the patch window size can be treated as a hy-
perparameter to be tuned based on the specific dataset. Furthermore, we introduced two
key hyperparameters for our PCA implementation: the patch window size (pws) and the
option to scale the data before performing PCA. The results of PCA presented in Tables
5.4 and 5.5 reflect the accuracy obtained for each configuration of these two hyperparam-
eters, allowing us to explore the impact of different settings on performance and to choose
the best hyperparameters to present the results in Table 5.2. This flexibility in the PCA
configuration allows us to adapt the method to a wide range of tasks, optimizing both
performance and computational efficiency.

Hyperparameter Sensitivity of lcomb. In addition to the standard lcomb configura-
tion, we evaluated a variant called lcomb_top_k, which introduces a form of regularization
to make the attention mechanism more stable. In lcomb_top_k, only the top k largest at-
tention weights are selected, and each row of the attention matrix is rescaled by dividing
by the sum of these k weights. For our experiments, we set k = 7. This mechanism is
designed to reduce noise in the attention distribution, focusing the model on the most im-
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portant relationships between elements in the input. The results shown in Figure 5.4 show
the performance comparison between lcomb and lcomb_top_k across several datasets for
both MOMENT and Mantis foundation models.

5.6 Tests and Comparisons

Statistical Tests. The heatmap shown in Figure 5.2 presents the pairwise p-values be-
tween different fine-tuning methods applied to the MOMENT and Mantis foundation
models across several datasets. The methods compared include No Adapter, PCA, SVD,
Rand Proj, VAR, and lcomb. The p-values were calculated using a two-sample Student’s t-
test with unequal variances, based on accuracy results obtained from three different seeds
for eachmethod. The null hypothesis for each comparison states that there is no significant
difference in the mean performance, in terms of accuracy, between the two methods being
compared. A p-value close to 1 supports this hypothesis, indicating that the two methods
yield statistically similar performance. In contrast, a p-value close to 0 suggests a signif-
icant difference. In the MOMENT heatmap, the lowest p-value observed is 0.46, while
for Mantis, the minimum p-value is 0.25. These visualizations indicate that there is no
statistically significant difference between fine-tuning using adapter + head with different
adapters, and similarly, no difference is observed between adapter + head and head-only
fine-tuning, regardless of the adapter used.

Rank comparisons. Figure 5.5 shows a comparison of the average rank for different
adapter methods used in theMOMENT andMantis foundation models. The average ranks
were computed across all datasets and averaged over three seeds. The comparison gives
insight into the relative performance of each adapter method when applied to these two
models. For the MOMENT foundation model, as depicted in Figure 5.5a, the PCA adapter
ranks the lowest, indicating the best performance, while the lcomb adapter ranks the high-
est, showing relatively lower performance. The remaining adapters—SVD, Rand_Proj, and
VAR—lie in between, with Rand_Proj and SVD showing close performance. Similarly, in the
case of the Mantis foundation model (Figure 5.5b), PCA exhibits the lowest average rank,
implying superior performance. Rand_Proj also performs relatively worse in this case. The
consistency of PCA’s superior performance across both models highlights its effectiveness.

5.7 Conclusions

We presented a latent space compression framework that preserves 96.15% of baseline
accuracy while retaining ∼ 2% of the original embedding dimensions, yielding up to a
10× speedup and enabling 4.5× more datasets per GPU. These gains demonstrate the
effectiveness of adapters in scaling foundation models under limited resources. Future
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directions include refining compression techniques and extending the approach to more
diverse time series domains.
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(a) Heatmap of Pairwise p-values for Adapter Methods for MOMENT Founda-
tion Model

(b) Heatmap of Pairwise p-values for Adapter Methods for Mantis Foundation
Model

Figure 5.2: Heatmap of pairwise p-values for adapter methods applied to MOMENT and
Mantis foundation models, averaged across all datasets and three different seeds. "No
adapter" refers to fine-tuning the head only, while applying a dimensionality reduction
technique corresponds to fine-tuning both the adapter and the head. The results indicate
no statistically significant difference in performance between the no-adapter setting (i.e.,
using all D channels for head fine-tuning) and the adapter-based approach (i.e., reducing
to D′ channels before fine-tuning). All performance results are detailed in Table 5.2. How-
ever, while performance remains unchanged, adapter-based methods significantly reduce
runtime, as shown in Figure 5.3.
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(a) MOMENT (b) Mantis

Figure 5.3: Comparison of running times for MOMENT and Mantis models, averaged
across all datasets and three different seeds. For MOMENT, which has 341M parameters,
using an adapter reduces the running time by approximately 10× compared to the version
without an adapter, while retaining 97.30% of the original performance (see Table 5.2). For
Mantis, a significantly smaller model with around 8M parameters, the running time is also
reduced by a factor of 2 when using a PCA-based adapter, while maintaining 95% of the
original performance. "No Adapter" means fine-tuning the head only.
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(a) MOMENT

(b) Mantis

Figure 5.4: Performance Comparison between lcomb and lcomb_top_k configurations for
both MOMENT and Mantis models.
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(a) Adapter’s Average Rank for MOMENT Foundation Model

(b) Adapter’s Average Rank for Mantis Foundation Model

Figure 5.5: Comparison of Adapter’s Average Rank for MOMENT and Mantis Foundation
Models averaged across all datasets and three different seeds
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Conclusions and Future Work

6.1 Improvement of multivariate time series represen-

tations

This thesis set out to develop efficient, interpretable, and robust representations for mul-
tivariate time series by embracing the inherent interdependencies among channels rather
than treating each independently. Our approach was initiated with the creation of SAM-
former, a shallow transformer architecture tailored for multivariate data. SAMformer dis-
tinguishes itself by employing a channel-wise attention mechanism, which reduces the
number of parameters compared to timestamp-level attention and consequently mitigates
overfitting. This design not only enables the extraction of clearer, block-structured at-
tention matrices that reveal correlations among features, but it also provides significant
interpretability advantages. For instance, in datasets like Weather, where physical quanti-
ties such as pressure, humidity, and temperature exhibit stable temporal correlations due
to their underlying physical laws, the channel attention mechanism proved exceptionally
effective. In non-physical domains such as inter-city traffic data, this method maintained
its robustness and efficacy.

In addition, we integrated sharpness-aware minimization (SAM) into the training pro-
cess to steer the optimization away from suboptimal local minima. This enhanced the
stability and generalization of our model, ensuring that the learned representations were
both robust and capable of capturing nuanced temporal dynamics. The simplicity of our
SAMformer, combined with the careful application of SAM, demonstrated that even shal-
low architectures can address the limitations of standard transformers, which often suffer
from excessive regularization and an overly large number of parameters.

Beyond this contribution, we also sought to understand the behavior of forecasting
networks from a theoretical perspective. In this part of the thesis, we examined the the-
oretical foundations of multivariate time series forecasting through the lens of random
matrix theory and the concentration of measure phenomenon. We focused on the linear
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projection layer that typically follows the nonlinear feature extractor in deep forecasting
architectures. By assuming Lipschitz continuity of the nonlinear mapping, we showed that
the resulting representation does not drastically distort the input distribution, allowing for
a tractable theoretical analysis.

Building on this framework, we derived an analytical understanding of the learning
dynamics of linear predictors applied to deep features. Our analysis provides precise con-
ditions under which these predictors generalize well, and explains the impact of architec-
tural and statistical properties on learning curves. Notably, the theory accounts for the
observed empirical performance of deep forecasting models, whose behavior aligns closely
with the theoretical predictions.

This theoretical contribution bridges the gap between complex nonlinear models and
simpler linear approximations, offering both interpretability and analytical tractability. It
also suggests promising avenues for principled model design and regularization strategies
in high-dimensional time series forecasting, grounded in rigorous mathematical theory.

Furthermore, we explored the adaptation of foundationmodels through dimensionality
reduction techniques. By reducing the latent space from a high-dimensional space D to a
moremanageableD′, our approach ensured that eachmeta-channel incorporated informa-
tion from multiple original channels. Even when applying straightforward methods such
as Principal Component Analysis (PCA), we achieved impressive latent space compression
and maintained high forecasting accuracy, scalability, and practicality. This demonstrates
that simple yet effective dimensionality reduction techniques can serve as a foundation for
more advanced models in the future, potentially leading to the development of large-scale
foundation models for time series analysis.

In essence, this thesis shows that robust and interpretable multivariate time series rep-
resentations can be achieved through the thoughtful integration of simple model archi-
tectures, effective optimization techniques, and rigorous theoretical analysis. By unifying
these elements, we have established a framework that addresses the challenges of over-
fitting and high dimensionality and enhances the interpretability and efficiency of fore-
casting models. We hope that the insights and methods presented herein will lay the
groundwork for future research, inspiring the development of even more sophisticated yet
computationally tractable models that fully exploit the richness of multivariate time series
data.

6.2 Open Problems

This section presents a comprehensive overview of potential directions, organized as a sin-
gle coherent discussion to highlight their interconnections and how theymight collectively
inform the next generation of approaches in this field.
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6.2.1 Hybrid Channel-Temporal Attention

A first line of investigation concerns the contexts in which channel attention is most ef-
fective and when it might be beneficial to blend channel-level attention with temporal at-
tention. We have seen that channel attention excels in scenarios where the correlations
between different channels are either stable or relatively slow-varying over time, as is of-
ten the case with physical quantities (e.g., temperature, humidity, and pressure in me-
teorological data). However, in real-world applications, especially those involving social
or economic data, correlations may evolve rapidly, rendering static channel correlations
insufficient. Future work could thus explore dynamic or adaptive channel attention mech-
anisms that track changes in inter-channel dependencies over time, potentially in tandem
with conventional temporal attention. By designing a hybrid attention scheme, one might
capture not only the slow changes in physical relationships but also abrupt shifts in more
volatile contexts (such as financial indicators or complex traffic patterns).

6.2.2 Sharpness-Aware Minimization: Data and Model Scaling

A second topic of considerable interest lies in investigating how the performance gains of-
fered by SAM relate to both the quantity and the quality of the available data. The empiri-
cal results obtained so far suggest that SAM is particularly valuable in lower-data regimes,
where it helps the model find flatter minima and avoid overfitting. Yet, one might ask
whether these advantages hold when large-scale datasets become available, or when data
noise and inconsistencies are relatively high. It is plausible that the benefits of SAMmight
diminish if the model already has ample data to learn stable representations. A system-
atic evaluation of SAM’s efficacy across a spectrum of data sizes, from extremely sparse
to very large datasets, could yield actionable insights on when, and how, SAM should be
employed. Moreover, it may be instructive to assess whether deep networks (e.g., deeper
transformer stacks or other architectures) continue to profit from SAM, or if themagnitude
of gains diminishes as model capacity grows and data becomes more abundant.

6.2.3 Anisotropic Sharpness-Aware Minimization

Another promising extension is to develop an improved version of SAM that is sensitive
to anisotropic directions of sharpness in the parameter space. Presently, SAM applies
isotropic perturbations by seeking a worst-case loss within a uniform ball around the pa-
rameters, which can be suboptimal if only a few directions in the parameter space exhibit
high curvature. In other words, SAM in its current form addresses sharpness in a first-order
manner, focusing on the largest eigenvalue of the Hessian but not explicitly accounting for
other eigenvalues that might also be substantial. A more advanced, anisotropic approach
could weigh perturbations by the eigenvalues of the Hessian, effectively shaping the per-
turbation region as an ellipse rather than a sphere. This would allow the optimization to
focus more directly on the directions that truly matter for sharpness, potentially improv-
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ing training stability and convergence. However, implementing this approach in practice
requires careful consideration of computational overhead, as approximating or comput-
ing the Hessian in high-dimensional models can be extremely resource-intensive. Still,
even partial or low-rank approximations to the Hessian might confer substantial benefits,
pointing to an exciting area of algorithmic research.

6.2.4 Scaling SAMformer as a Foundation Model

Beyond improvements in optimization strategies, it would be worthwhile to consider how
SAMformer itself could be scaled up or adapted to serve as a foundation model. Currently,
SAMformer stands out for its shallow depth and channel-focused attention, which make
it computationally efficient and interpretable. Future research might explore ways of ex-
tending it into deeper or broader architectures that remain tractable for large-scale train-
ing. For instance, one could imagine a multi-stage transformer that progressively refines
channel interactions, or a variant that includes a learned embedding layer capable of han-
dling heterogeneous data types (e.g., categorical channels alongside continuous signals).
Additionally, as foundation models are increasingly employed for tasks beyond forecast-
ing—such as classification, anomaly detection, and imputation—there is ample opportu-
nity to generalize SAMformer to these domains. By carefully incorporating channel-level
representations, one might preserve the interpretability and robustness that shallow trans-
formers have demonstrated, even when scaling to much larger parameter counts or more
diverse datasets.

6.2.5 Theoretical Insights into Rank and Entropy Collapse

From a theoretical perspective, there remain several open questions that could be fruitfully
investigated. One line of inquiry involves the interplay between rank collapse and entropy
collapse in attention matrices. Our experiments and theoretical arguments have suggested
that rank collapse—where the attention matrix degenerates toward rank one—can severely
degrade performance in multivariate time series tasks, more so than the entropy collapse
that is often cited in natural language processing and computer vision. It would be valuable
to compare these phenomena across different domains systematically, thereby determin-
ing whether certain tasks or data modalities are more susceptible to rank collapse than
others. Further theoretical developments could also clarify whether techniques like SAM
implicitly act as a form of nuclear norm maximization (i.e., encouraging higher-rank solu-
tions in the attention matrix). Such an understanding would be beneficial in bridging the
gap between time series, NLP, and computer vision, potentially revealing common under-
lying principles.
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6.2.6 ExtendingMulti-TaskRegularizationTheory toNonlinearMod-

els

A promising theoretical extension involves generalizing ourmulti-task regularization frame-
work and the concentrated random vector assumption from linear settings to nonlinear neu-
ral networks. Previously, we derived closed-form expressions for optimal hyperparameters
in linear models and validated their accuracy empirically. Interestingly, preliminary exper-
iments on nonlinear architectures, such as shallow transformers, exhibited learning curves
closely matching linear predictions, suggesting that the underlying theoretical principles
could extend beyond linearity.

Formalizing this observation might leverage the concentration hypothesis, which posits
that due to nonlinearities and Lipschitz continuity, neural networks typically do not dras-
tically alter the distribution of their inputs. Specifically, if intermediate layers exhibit suf-
ficient contraction properties, the network’s output distribution remains close to that of
the input. In forecasting models, the final linear projection layer would then naturally lend
itself to analysis using our existing linear theoretical framework. By validating these as-
sumptions, we could extend rigorous hyperparameter selection and establish robust error
bounds for a broad class of deep forecasting architectures.

6.2.7 Dimension Reduction and Latent Space Representation

Dimension reduction and foundation models offer yet another domain ripe for future ex-
ploration. Our initial experiments showed that even basic techniques like PCA can com-
press the latent space of multivariate time series without substantial loss in accuracy. Nev-
ertheless, more sophisticated methods—such as manifold learning or autoencoder-based
dimensionality reduction—could be investigated to capture nonlinear structures in the
data. Beyond the compression ratio itself, interpretability stands as a key consideration:
how can we combine channels in a way that remains transparent to domain experts? For
instance, if two channels contain redundant information, should they be merged early in
the architecture, or is it preferable to let the model learn such correlations automatically?
Studying the effect of channel redundancy on both model performance and training stabil-
ity could yield important guidelines for the design of future foundation models. Addition-
ally, practical issues arise from overlapping subsequences during training: large overlaps
can lead to repetitive data samples that may skew the optimization process. Investigat-
ing how to optimally segment or sample multivariate time series might further refine the
performance and computational efficiency of these methods.

6.2.8 Computational Challenges of 4D Attention

In a more general sense, 4D attention mechanisms—where each time step of a given channel
attends to every time step of every other channel—represent an intriguing but potentially
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computationally explosive direction. Such a fully-coupled scheme would likely demand
advanced techniques such as flash attention, low-rank factorization, or additional dimen-
sion reductionmethods to remain tractable. Balancing expressiveness, interpretability, and
efficiency in this four-dimensional space is a non-trivial challenge, but it holds promise for
capturing intricate interdependencies between channels and time steps that simpler archi-
tectures might miss.

6.2.9 Multivariate Time Series ForecastingwithMulti-Scale Spatio-

Temporal Disentanglement

A promising strategy for handling multivariate time series involves disentangling global and
local components by decomposing the input tensorX ∈ RB×T×D into separate components
that capture both time-invariant (global) and time-varying (local) structures. Concretely,
one can write

X̂ =
(
Ufix + ∆Ut

)
V

where Ufix is a shared representation across all time steps, ∆Ut represents the per-time-
step deviation, and V is a latent temporal representation. This decomposition naturally
disentangles stable trends from more transient behaviors, enabling clearer interpretability
and more focused regularization.

In practice, one can define a reconstruction term

Lrec =
∥∥X − X̂∥∥2

F

To discourage overfitting and ensure that ∆Ut remains small unless necessary, a regular-
ization penalty

Lreg = λreg

∥∥∆Ut∥∥2F
is added, where ∥ · ∥F denotes the Frobenius norm. Additionally, if forecasting is part of
the objective, a term

Lforecast =
∥∥Y − Ŷ∥∥2

can be incorporated, where Y is the ground-truth future sequence and Ŷ is the model’s
prediction (i.e. Ŷ = f (Uf ix ,∆Ut ,V) for some learnable function f ) . The overall loss thus
becomes:

L = Lreconstruction + Lreg + αLforecast,

with α controlling the trade-off between reconstruction accuracy and forecasting perfor-
mance. By clearly separating Ufix from ∆Ut , this approach provides a natural way to cap-
ture global, time-invariant patterns alongside local variations. It also simplifies the in-
terpretation of learned parameters and facilitates the application of domain-specific con-
straints or regularizers, ultimately leading to models that are both robust and more trans-
parent in their handling of multivariate time series.
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6.2.10 Aligning Large Language Models with Time Series Tasks

Finally, an especially forward-looking question is how to align large language models (LLMs)
with time series tasks. Given that LLMs have excelled in learning from vast sequences of
tokens, one might ask whether time series can be discretized or tokenized in a manner
analogous to text. Achieving such an alignment would enable the direct application (or
fine-tuning) of LLMs on time series data, leveraging their capacity for sequence model-
ing and potentially unlocking new capabilities in forecasting, anomaly detection, or other
tasks. However, the fundamental differences between natural language data and numeric
time series—particularly regarding continuity, scale, and correlation structures—must be
carefully addressed. Investigating how best to transform continuous signals into discrete
tokens, how to preserve crucial time dependencies, and how to incorporate domain-specific
inductive biases remain open questions. Nonetheless, bridging the gap between LLMs
and time series could unify two previously separate research trajectories, fostering cross-
pollination of ideas and techniques.

6.2.11 Conclusion

In summary, the domain of multivariate time series analysis is brimming with exciting
opportunities. As datasets grow larger and more complex, the importance of effective,
scalable, and interpretable models becomes ever more critical. By building upon the foun-
dations laid by shallow channel-attention transformers, SAM, and theoretically motivated
regularization, we can aspire to create advanced architectures that strike an optimal bal-
ance between performance, interpretability, and computational cost. Whether by refining
SAM to handle anisotropic sharpness, extending our theoretical frameworks to deep net-
works, or harnessing the power of dimension reduction and foundation models, there is a
vast horizon of research waiting to be explored. The work presented thus far has offered
a personal contribution to this evolving landscape, and it is our hope that future efforts
will continue to push the boundaries of what is possible in representation learning dor
multivariate time series.
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Appendix A

SAMformer

Roadmap. In this appendix, we provide additional background knowledge in Section A.1.
The proofs of the main theoretical results are provided in Section A.2. We display the cor-
responding table of contents below.

A.1 Additional Background

A.1.1 Reversible Instance Normalization: RevIN

Overview. T. Kim et al. 2021 recently proposed RevIN, a reversible instance normaliza-
tion to reduce the discrepancy between the distributions of training and test data. Indeed,
statistical properties of real-world time series, e.g. mean and variance, can change over
time, leading to non-stationary sequences. This causes a distribution shift between training
and test sets for the forecasting task. The RevIN normalization scheme is now widespread
in deep learning approaches for time series forecasting (S.-A. Chen et al., 2023; Yuqi Nie
et al., 2023). The RevIN normalization involves trainable parameters (β, γ) ∈ RK×RK and
consists of two parts: a normalization step and a symmetric denormalization step. Before
presenting them, we introduce for a given input time series X(i) ∈ X the empirical mean
µ̂[X

(i)
k ] and empirical standard deviation σ̂2[X(i)k ] of its k-th featureX(i)k ∈ R1×L as follows: µ̂

[
X
(i)
k

]
= 1

L

∑L
t=1X

(i)
kj

σ̂2
[
X
(i)
k

]
= 1

L

∑L
t=1(X

(i)
kj − µ̂[X

(i)
k ])

2 .
(A.1)

The first one acts on the input sequence X(i) and outputs the corresponding normalized
sequence X̃(i) ∈ RK×L such that for all k, t ,

X̃
(i)
kt = γk

 X
(i)
kt − µ̂

[
X
(i)
k

]
√
σ̂2
[
X
(i)
k

]
+ ε

+ βk , (A.2)
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where ε > 0 is a small constant to avoid dividing by 0. The neural network’s input is
then X̃(i), instead of X(i). The second step is applied to the output of the neural network
Ỹ(i), such that the final output considered for the forecasting is the denormalized sequence
Ŷ(i) ∈ RK×H such that for all k, t ,

Ŷ
(i)
kt =

√
σ̂2
[
X
(i)
k

]
+ ε ·

(
Ỹ
(i)
kt − βk
γk

)
+ µ̂

[
X
(i)
k

]
. (A.3)

As stated in T. Kim et al. 2021, µ̂, σ̂2,β and γ contain the non-stationary information of
the input sequences X(i).

End-to-end closed form with linear model and RevIN. We consider a simple linear
neural network. Formally, for any input sequenceX ∈ RD×L, the prediction of flin : RD×L →
RD×H simply writes

flin(X) = XW. (A.4)

When combined with RevIN, the neural network flin is not directly applied to the input
sequence but after the first normalization step of RevIN (Eq. (A.2)). An interesting benefit
of the simplicity of flin is that it enables us to write its prediction in closed form, even when
with RevIN. The proof is deferred to Appendix A.2.4.

Proposition A.1.1 (Closed-form formulation). For any input sequence X ∈ RK×L, the
output of the linear model Ŷ = flin(X) ∈ RK×H has entries

Ŷkt = µ̂[Xk ] +

L∑
j=1

(Xkj − µ̂[Xk ])Wjt −
βk
γk

√
σ̂2[Xk ] + ε

(
1−

L∑
j=1

Wjt

)
, (A.5)

Proposition A.1.1 highlights the fact that the k-th variable of the outputs Ŷ only depends
on k-th variable of the input sequence X. It leads to channel-independent forecasting,
although we did not explicitly enforce it. (A.5) can be seen as a linear interpolation around
the mean µ̂ with a regularization term on the network parametersW involving the non-
stationary information σ̂2,β, γ. Moreover, the output sequence Ŷ can be written in a more
compact and convenient matrix formulation as follows

Ŷ = XW + ξ(X,W,β,γ), (A.6)

where ξ(X,W,β,γ) ∈ RK×H with entry
(
µ̂[Xk ]− βk

γk

√
σ̂2[Xk ] + ε

)(
1−

∑L
j=1Wjt

)
in the

k-th row and t-th column. The proof is deferred to Appendix A.2.5. With this formulation,
the predicted sequence can be seen as a sum of a linear term XW and a residual term
ξ(X,W,β,γ) that takes into account the first and second moments of each variable Xk , which
is reminiscent of the linear regression model.
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A.1.2 Sharpness-aware minimization (SAM)

Regularizing with the sharpness. Standard approaches consider a parametric family
ofmodels fω and aim to find parametersω thatminimize a training objectiveLtrain(ω), used
as a tractable proxy to the true generalization error Ltest(ω). Most deep learning pipelines
rely on first-order optimizers, e.g. SGD (Nesterov, 1983) or Adam (Kingma & Ba, 2015),
that disregard higher-order information such as the curvature, despite its connection to
generalization (Dziugaite & Roy, 2017; Chaudhari et al., 2017; Keskar et al., 2017). As Ltrain
is usually non-convex in ω, with multiple local or global minima, solving minω Ltrain(ω)
may still lead to high generalization error Ltest(ω). To alleviate this issue, Foret et al. 2021
propose to regularize the training objective with the sharpness, defined as follows

Definition A.1.2 (Sharpness, Foret et al. 2021). For a given ρ ≥ 0, the sharpness of
Ltrain at ω writes

s(ω, ρ) := max
∥ε∥2≤ρ

Ltrain(ω + ε)− Ltrain(ω). (A.7)

Remark A.1.1 (Interpretation of ρ). Instead of simply minimizing the training objective
Ltrain, SAM searches for parameters ω achieving both low training loss and low curvature
in a ball B(ω, ρ). The hyperparameter ρ ≥ 0 corresponds to the size of the neighborhood on
which the parameters search is done. In particular, taking ρ = 0 is equivalent to the usual
minimization of Ltrain.

In particular, SAM incorporates sharpness in the learning objective, resulting in the prob-
lem of minimizing w.r.t ω

LSAM
train(ω) := max∥ε∥2≤ρ

Ltrain(ω + ε)︸ ︷︷ ︸
=Ltrain(ω)+s(ω,ρ)

. (A.8)

Gradient updates. As the exact solution to the inner maximization in Eq. (A.8) is hard
to compute, the authors of (Foret et al., 2021) approximate it with the following first-order
Taylor expansion

ε∗(ω) := argmax
∥ε∥2≤ρ

Ltrain(ω + ε)

≈ argmax
∥ε∥2≤ρ

Ltrain(ω) + ε⊤∇Ltrain(ω)

= argmax
∥ε∥2≤ρ

ε⊤∇Ltrain(ω) , (A.9)

where the solution of (A.9) writes ε̂(ω) = ρ ∇Ltrain(ω)
∥∇Ltrain(ω)∥2 . It leads to the following gradient

update

ωt+1 = ωt − η∇Ltrain
(
ωt + ρ

∇Ltrain(ω)
∥∇Ltrain(ω)∥2

)
,

where η is the learning rate.
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A.2 Proofs

A.2.1 Notations

To ease the readability of the proofs, we recall the following notations. We denote scalar
values by regular letters (e.g., parameter λ), vectors by bold lowercase letters (e.g., vector
x), and matrices by bold capital letters (e.g., matrixM). For a matrixM ∈ Rn×m, we denote
byMi its i -th row, byM·,j its j-th column, by mi j its entries and byM⊤ its transpose. We
denote the trace of a matrixM by Tr(M), its rank by rank(M) and its Frobenius norm by
∥M∥F. We denoteσ(M) := (σ1(M), . . . , σñ(M)) the vector of singular values ofM in non-
decreasing order, with ñ = min{n,m} and the specific notation σmin(M), σmax(M) for the
minimum and maximum singular values, respectively. We denote by ∥M∥∗ =

∑ñ
i=1 σi(M)

its nuclear norm and by ∥M∥2 = σmax(M) its spectral norm. When M is square with
n = m, we denote λ(M) := (λ1(M), . . . , λn(M)) the vector of singular values of M in
non-decreasing order and the specific notation λmin(M), λmax(M) for the minimum and
maximum singular values, respectively. For a vector x, its transpose writes x⊤ and its usual
Euclidean norm writes ∥x∥. The identity matrix of size n × n is denoted by In. The vector
of size n with each entry equal to 1 is denoted by 1n. The notationM ≽ 0 indicates that
M is positive semi-definite.

A.2.2 Proof of Proposition 3.2.1

We first recall the following technical lemmas.

Lemma A.2.1. Let S ∈ Rn×m and B ∈ Rm×m. If B has full rank, then

rank(SB) = rank(BS) = rank(S).

Proof. Let F1 := {Su|u ∈ Rm} ⊂ Rn and F2 := {(SB)u|u ∈ Rm} ⊂ Rn be the vector
spaces generated by the columns of S and SB respectively. By definition, the rank of a
matrix is the dimension of the vector space generated by its columns (equivalently by its
rows). We will show that F1 and F2 coincides. Let v ∈ F1, i.e., there exists u ∈ Rm such
that v = Su. As B is full rank, the operator x → Bx is bijective. It follows that there
always exists some z ∈ Rm such that u = Bz. Then, we have

v = Su = S(Bz) = (SB)z,

which means that v ∈ F2. As v was taken arbitrarily in F1, we have proved that F1 ⊂ F2.
Conversely, consider y ∈ F2, i.e., we can write y = (SB)z for some z ∈ Rm. It can then be
seen that

y = (SB)z = S(Bz),
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which means that y ∈ F1. Again, as y was taken arbitrarily, we have proved that F1 ⊂ F2.
In the end, we demonstrated that F1 and F2 coincide, hence they have the same dimension.
By definition of the rank, S and SB have the same rank. Similar arguments can be used
to show that S and BS have the same rank, which concludes the proof.

The next lemma is a well-known result in matrix analysis and can be found in Horn &
Johnson 1991, Theorem 4.4.5. For the sake of self-consistency, we recall it below along with
a sketch of the original proof.

Lemma A.2.2. (see Horn & Johnson, 1991, Theorem 4.4.5, p. 281). Let S ∈ Rn×m,B =
Rp×H and C ∈ Rn×H. There exists matrices Y ∈ Rm×H and Z ∈ Rn×p such that SY −
ZB = C if, and only if,

rank

([
S C

0 B

])
= rank

([
S 0

0 B

])
.

Proof. Assume that there exists Y ∈ Rm×H and Z ∈ Rn×p such that SY−ZB = C. Recall
that the following equality holds[

S SY − ZB
0 B

]
=

[
Im −Y
0 Iq

][
S 0

0 B

][
In Z

0 Ip

]
. (A.10)

Using Lemma A.2.1 on the right-hand-side of Eq. (A.10), we obtain

rank

([
S SY − ZB
0 B

])
= rank

([
S 0

0 B

])
.

Using SY − ZB = C concludes the proof for the first implication of the equivalence.
To prove the opposite direction, the authors of Horn & Johnson 1991 assume that

rank

([
S C

0 B

])
= rank

([
S 0

0 B

])
.

Since two matrices have the same rank if, and only if, they are equivalent, we know that
there exists Q ∈ R(n+p)×(n+p),U ∈ R(m+q)×(m+q) non-singular such that[

S C

0 B

]
= Q

[
S 0

0 B

]
U. (A.11)

The rest of the proof in Horn & Johnson 1991 is constructive and relies on Eq. (A.11) to
exhibit Y ∈ Rm×H and Z ∈ Rn×p such that SY−ZB = C. This concludes the proof of the
equivalence.

We now proceed to the proof of Proposition 3.2.1.
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Proof. Applying Lemma A.2.2 with S = P, B = 0, C = XWtoy andW in the role of Y en-
sures that there existsW ∈ RL×H such thatPW = XWtoy if and only if rank([P XWtoy]) =

rank(P), which concludes the proof.

A.2.3 Proof of Proposition 3.2.2

We first prove the following technical lemmas. While these lemmas are commonly used
and, for most of them, straightforward to prove, they are very useful to demonstrate Propo-
sition 3.2.2.

Lemma A.2.3 (Trace of a product of matrix). Let S,B ∈ Rn×n be symmetric matrices
with B positive semi-definite. We have

λmin(S)Tr(B) ≤ Tr(SB) ≤ λmax(S)Tr(B).

Proof. The spectral theorem ensures the existence of P ∈ Rn×n orthogonal, i.e., P⊤P =
PP⊤ = In, and ΛΛΛ ∈ Rn×n diagonal with the eigenvalues of S as entries such that S =
PΛΛΛP⊤. Benefiting from the properties of the trace operator, we have

Tr(SB) = Tr(InSB)

= Tr

PP⊤︸︷︷︸
=In

SB

 (orthogonality of P)

= Tr
(
P⊤SBP

)
(cyclic property of trace)

= Tr
(
P⊤PΛΛΛP⊤BP

)
(Spectral theorem)

= Tr

P⊤P︸︷︷︸
=In

ΛΛΛP⊤BP

 (orthogonality of P)

= Tr
(
ΛΛΛP⊤BP

)
.

We introduce B̃ = P⊤BP = [b̃i j ]i j . It follows from the definition of ΛΛΛ that

Tr(SB) = Tr
(
ΛΛΛP⊤BP

)
= Tr

(
ΛΛΛB̃
)
=
∑
i

λi(S)b̃i i . (A.12)

We would like to write the b̃i j with respect to the pi j , bi j the elements of P,B, respectively.
As P is orthogonal, we know that its columns (ei)ni=0 form an orthonormal basis of Rn.
Hence, the entry (i , j) of ΛΛΛP⊤BP, writes as follows:

b̃i j =
∑
kl

pkibi jpjk
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=
∑
k

pki

(∑
l

bi jpjk

)
︸ ︷︷ ︸
[Bej ]k

=
∑
k

pki [Bej ]k

= e⊤i Bej ≥ 0. (B ≽ 0)

Hence, as B is positive semi-definite, the b̃i j are nonnegative. It follows that

λmin(S)
∑
i

b̃i i ≤
∑
i

λi(S) b̃i i︸︷︷︸
≥0

≤ λmax(S)
∑
i

b̃i i . (A.13)

Moreover, using the definition of B̃, the orthogonality of P and the cyclic property of the
trace operation, we have

∑
i

b̃i i = Tr
(
B̃
)
= Tr

(
P⊤BP

)
= Tr

PP⊤︸︷︷︸
=In

B

 = Tr(B).
Combining this last equality with Eq. (A.12) and Eq. (A.13) concludes the proof, i.e.,

λmin(S)Tr(B) ≤ Tr(SB) ≤ λmax(S)Tr(B). (A.14)

LemmaA.2.4 (Power of symmetric matrices). Let S ∈ Rn×n be symmetric. The spectral
theorem ensures the existence of P ∈ Rn×n orthogonal, i.e., P⊤P = PP⊤ = In, and
ΛΛΛ ∈ Rn×n diagonal with the eigenvalues of S as entries such that S = PΛΛΛP⊤. For any
integer n ≥ 1, we have

Sn = PΛΛΛnP⊤.

In particular, the eigenvalues of Sn are equal to the eigenvalues of S to the power of n.

Proof. Let n ≥ 1 be an integer. We have

Sn =
(
PΛΛΛP⊤

)n
= PΛΛΛP⊤ × PΛΛΛP⊤ × · · · × PΛΛΛP⊤ × PΛΛΛP⊤︸ ︷︷ ︸

×n

= PΛΛΛ× ΛΛΛP⊤ . . .PΛΛΛ× ΛΛΛP⊤︸ ︷︷ ︸
×n

(orthogonality of P)

= PΛΛΛ× ΛΛΛ× · · · × ΛΛΛ× ΛΛΛ︸ ︷︷ ︸
×n

P⊤ (orthogonality of P)

= PΛΛΛnP⊤.

The diagonality of ΛΛΛ suffices to deduct the remark on the eigenvalues of Sn.
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Lemma A.2.5 (Case of equality between eigenvalues and singular values). Let S ∈
Rn×n be symmetric and positive semi-definite. Then the i -th eigenvalue and the i -th sin-
gular value of S are equal, i.e., for all i ∈ J1, nK, we have

λi(S) = σi(S).

Proof. Let i ∈ J1, nK. By definition of singular value, we have

σi(S) :=
√
λi(S⊤S)

=
√
λi(S2) (S is symmetric)

=

√
λi(S)

2 (Lemma A.2.4)

= |λi(S)|
= λi(S). (S ≽ 0)

Lemma A.2.6. Let X ∈ RD×L be an input sequence and S ∈ RL×L be a positive semi-
definite matrix. Then, XSX⊤ is positive semi-definite.

Proof. It is clear that XSX⊤ ∈ RL×L is symmetric. Let u ∈ RL. We have:

u⊤XSX⊤u =
(
X⊤u

)⊤
S
(
X⊤u

)
≥ 0. (S ≽ 0)

As u was arbitrarily chosen, we have proved that XSX⊤ is positive semi-definite.

We now proceed to the proof of Theorem 3.2.2.

Proof. We recall thatWQW
⊤
K is symmetric and positive semi-definite, we have

∥XWQW
⊤
KX

⊤∥∗ = Tr
(√(

XWQW
⊤
KX

⊤
)⊤
XWQW

⊤
KX

⊤
)

= Tr
(√
XWKW

⊤
QX

⊤XWQW
⊤
KX

⊤
)

= Tr

(√
XWQW

⊤
KX

⊤XWQW
⊤
KX

⊤
)

(symmetry)

= Tr

(√(
XWQW

⊤
KX

⊤
)2)

= Tr
(
XWQW

⊤
KX

⊤) (Lemma A.2.6 with S =WQW
⊤
K)

= Tr
(
X⊤XWQW

⊤
K

)
. (cyclic property of the trace)
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Using the fact that X⊤X is positive semi-definite (Lemma A.2.6 with S = IL), and that
WQW

⊤
K is symmetric, Lemma A.2.3 can be applied withM = WQW

⊤
K and B = X⊤X. It

leads to:

∥XWQW
⊤
KX

⊤∥∗ = Tr
(
X⊤XWQW

⊤
K

)
≤ λmax

(
WQW

⊤
K

)
Tr
(
X⊤X

)
. (Lemma A.2.3)

AsWQW
⊤
K is positive semi-definite, Lemma A.2.5 ensure

λmax
(
WQW

⊤
K

)
= σmax

(
WQW

⊤
K

)
= ∥WQW

⊤
K∥2

by definition of the spectral norm ∥·∥2. Recalling that by definition, Tr
(
X⊤X

)
= ∥X∥2F

concludes the proof, i.e.,

∥XWQW
⊤
KX

⊤∥∗ ≤ ∥WQW
⊤
K∥2∥X∥2F.

A.2.4 Proof of Proposition A.1.1

Proof. Let k ∈ J1, KK and t ∈ J1, HK. We have

Ŷkt =
√
σ̂2[Xk ] + ε ·

(
ỹkt − βk
γk

)
+ µ̂[Xk ], (from (A.3))

=
√
σ̂2[xk ] + ε ·

(∑L
j=1 X̃kjWjt − βk

γk

)
+ µ̂[Xk ], (from (A.4))

=

√
σ̂2[Xk ] + ε

γk
·

L∑
j=1

X̃kjWjt −
βk
γk

√
σ̂2[Xk ] + ε+ µ̂[Xk ]

=

√
σ̂2[Xk ] + ε

γk
·

L∑
j=1

(
γk

(
Xkj − µ̂[xk ]√
σ̂2[Xk ] + ε

)
+ βk

)
Wjt −

βk
γk

√
σ̂2[xk ] + ε+ µ̂[Xk ],

(from (A.2))

=

L∑
j=1

(Xkj − µ̂[Xk ])Wjt +
βk
γk

√
σ̂2[Xk ] + ε

(
L∑
j=1

Wjt − 1

)
+ µ̂[Xk ]

= µ̂[Xk ] +

L∑
j=1

(Xkj − µ̂[Xk ])Wjt −
βk
γk

√
σ̂2[Xk ] + ε

(
1−

L∑
j=1

Wjt

)
.

A.2.5 Matrix formulation of Ŷ in Eq. (A.6)

Proof. Let k ∈ J1, KK and t ∈ J1, HK. From Proposition A.1.1, we have

Ŷkt = µ̂[Xk ] +

L∑
j=1

(Xkj − µ̂[Xk ])Wjt −
βk
γk

√
σ̂2[Xk ] + ε

(
1−

L∑
j=1

Wjt

)
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=

L∑
j=1

XkjWjt +

(
µ̂[Xk ]−

βk
γk

√
σ̂2[Xk ] + ε

)
·

(
1−

L∑
j=1

Wjt

)
.

Gathering in matrix formulation concludes the proof.
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Appendix B

OnMulti-Task learning in multivariate Time
Series Forecasting

Roadmap. This appendix provides the technical details omitted in the main paper. Sec-
tion B.1 offers a detailed computation for Ŵt and Ŵ0. Section B.2 contains a proof of
Lemma 1. Section B.3 explains the theoretical steps for deriving the training and test risks,
as well as the deterministic equivalents. Section B.4 discusses the technical tools used to
derive the main intuitions presented by the theory. Section B.5 focuses on the derivation
of the estimations of the main quantities involved in the training and test risks. Section
B.6 showcases that our theoretical framework applies very well in the multi-task regres-
sion setting. Finally, Section B.8 deals with the limitations of our approach in a non-linear
setting.

Note: The proofs included in this appendix are derived from the paper presented in chap-
ter 4 and were developed by my colleagues Malik Tiomoko and Cosme Louart.

B.1 Minimization Problem

B.1.1 Computation of Ŵt and Ŵ0

The proposed multi task regression finds Ŵ = [Ŵ⊤1 , . . . , Ŵ
⊤
k ]
⊤ ∈ RLT×H which solves the

following optimization problem using the additional assumption of relatedness between
the tasks (Wt =W0 + Vt for all tasks t):

min
(W0,V)∈RL×RL×T×RT

J (W0,V) (B.1)

where

J (W0,V) ≡
1

2λ
tr
(
W⊤0W0

)
+
1

2

T∑
t=1

tr
(
V⊤t Vt

)
γt

+
1

2

T∑
t=1

tr
(
ξ⊤t ξt

)
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ξt = Y
(t) −

X(t)
⊤
Wt√
TL

, ∀t ∈ {1, . . . , T}.

The Lagrangian introducing the lagrangian parameters for each task t , αt ∈ Rnt×H
reads as

L(W0,Vt , ξt ,αt) =
1

2λ
tr
(
W⊤0W0

)
+
1

2

T∑
t=1

tr
(
V⊤t Vt

)
γt

+
1

2

∑
t=1

tr
(
ξ⊤t ξt

)
+

T∑
t=1

tr

(
α⊤t

(
Y(t) −

X(t)
⊤
(W0 + Vt)√
TL

− ξt

))

Differentiating with respect to the unknown variables Ŵ0, V̂t , ξt , αt and bt , we get the
following system of equation

1

λ
Ŵ0 −

T∑
t=1

X(t)αt√
TL

= 0

1

γt
V̂t −

X(t)αt√
TL

= 0

ξt − αt = 0

Y(t) −
X(t)

⊤
Ŵ0√
TL

−
X(t)

⊤
V̂t√

TL
− ξt = 0

Plugging the expression of Ŵ0, V̂t and ξt into the expression of Y(t) gives

Y(t) = λ

T∑
t=1

X(t)
⊤
X(t)

TL
αt + γt

X(t)
⊤
X(t)

TL
αt + αt

which can be rewritten as

Y(t) = (λ+ γt)
X(t)

⊤
X(t)

TL
αt + λ

∑
v ̸=t

X(t)
⊤
X(v)

TL
αv + αt

With Y = [Y(1)
⊤
, . . . ,Y(T )

⊤
]⊤ ∈ Rn×H, α = [α⊤1 , . . . ,α⊤k ]⊤ ∈ Rn×H, and

Z =
∑T

t=1 e
[T ]
t e

[T ]
t

⊤
⊗ X(t) ∈ RTL×n, this system of equations can be written under the

following compact matrix form:

Q−1α = Y

with Q =
(
Z⊤AZ
TL
+ In

)−1
∈ Rn×n, and A =

(
Dγ + λ1T1⊤T

)
⊗ Id ∈ RTL×TL.

Solving for α then gives:

α = QY

– 156 –



Appendices

Moreover, using Ŵt = Ŵ0 + V̂t , the expression ofWt becomes:

Ŵt =
(
e
[T ]
t

⊤
⊗ IL

) AZα√
TL

,

Ŵ0 =
(
1⊤T ⊗ λIL

) Zα√
TL

.

B.2 Lemma 1 and proof with Random Matrix Theory

B.2.1 Lemma 1

Lemma 1 (Deterministic equivalents for Q̃, Q̃MQ̃ and Q2 for any M ∈ Rn×n). Under
the concentrated random vector assumption for each feature vector x(t)i and under the growth
rate assumption (Assumption 4.2.2), for any deterministicM ∈ Rn×n, we have the following
convergence:

Q̃↔ ¯̃Q, Q̃MQ̃↔ ¯̃Q2(M), Q2 ↔ Q̄2

where ¯̃Q2,
¯̃Q and Q̄2 are defined as follows

¯̃Q =

(
T∑
t=1

c0C
(t)

1 + δt
+ ITL

)−1
, δt =

1

TL
tr
(
Σ(t) ¯̃Q

)
, C(t) = A

1
2

(
e
[T ]
t ⊗Σ(t)

)
A
1
2

¯̃Q2(M) =
¯̃QM ¯̃Q+

1

TL

T∑
t=1

dt
1 + δt

¯̃QC(t) ¯̃Q, d =

(
IT −

1

TL
Ψ

)−1
Ψ(M) ∈ RT

Q̄2 = In − Diagt∈[T ](vtInt), vt =
1

TL

tr(C(t) ¯̃Q)

(1 + δt)2
+
1

TL

tr
(
C(t) ¯̃Q2(In)

)
(1 + δt)2

where

Ψ(M) =

 nt
TL

tr
(
C(t) ¯̃QM ¯̃Q

)
1 + δt


t∈[T ]

∈ RT , Ψ =

 nt
TL

tr
(
C(t) ¯̃QC(t

′) ¯̃Q
)

(1 + δt)(1 + δt ′)


t,t ′∈[T ]

∈ RT×T

B.2.2 Deterministic equivalent of the resolvent Q̃

The evaluation of the expectation of linear forms on Q̃ and Q̃2 can be found in the literature.
To find a result that meets exactly our setting, we will citep (Louart & Couillet, 2021) that
is a bit more general since it treats cases where E[x (t)i ] ̸= 0 for t ∈ [T ] and i ∈ [nt ]. Unlike
the main paper, and to be more general, the study presented below is “quasi asymptotic”
meaning that the results are true for finite value of d, n. Let us first rewrite the general
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required hypotheses, adapting them to our setting. For that purpose, we consider in the
rest of this paper a certain asymptotic I ⊂ {(d, n), d ∈ N, n ∈ N} = N2 satisfying:

{L,∃ n ∈ N : (d, n) ∈ I} = N and {n, ∃ d ∈ N : (d, n) ∈ I} = N.

such that n and d can tend to∞ but with some constraint that is given in the first item
of Assumption 1 below. Given two sequences (aL,n)L,n∈I, (bL,n)L,n∈I > 0, the notation
aL,n ≤ O(bL,n) (or a ≤ O(b)) means that there exists a constant C > 0 such that for all
(d, n) ∈ I , aL,n ≤ CbL,n.

Assumption 1. There exists some constants C, c > 0 independent such that:

• n ≤ O(d)

• Z = (z1, . . . , zn) ∈ RTL×n has independent columns

• for any (d, n) ∈ I , and any f : RTL×n → R 1-Lipschitz for the euclidean norm:

P (|f (Z)− E[f (Z)]| ≥ t) ≤ Ce−ct2.

• ∀i ∈ {n, ∃d ∈ N, (d, n) ∈ I}: ∥E[zi ]∥ ≤ O(1).

Theorem 1 ((Louart & Couillet, 2021), Theorem 0.9.). Given T ∈ N, Z ∈ RTL×n and two
deterministicA ∈ RTL×TL, we note Q̃ ≡ ( 1

TL
A
1
2ZZ⊤A

1
2+ITL)

−1. IfZ satisfies Assumption 1
andM ∈ RTL×TL is a deterministic matrix satisfying ∥M∥F ≤ 1, one has the concentration:

P
(∣∣∣tr(MQ̃)− tr(M ¯̃Qδ(S)(S))∣∣∣ ≥ t) ≤ Ce−ct2,

where S = (S1, . . . ,Sn) = (E[z1z⊤1 ], . . . ,E[znz⊤n ]), for δ ∈ Rn,
¯̃Qδ is defined as:

¯̃Qδ(S) =

 1
TL

∑
i∈[n]

A
1
2SiA

1
2

1 + δi
+ ITL

−1 ,
and δ(S) is the unique solution to the system of equations:

∀i ∈ [n] : δ(S)i =
1

n
tr
(
A
1
2SiA

1
2
¯̃Qδ(S)

)
.

We end this subsection with some results that will be useful for next subsection on the
estimation of bilinear forms on ¯̃Q.

Lemma 2 ((Louart & Couillet, 2021), Lemmas 4.2, 4.6). Under the setting of Theorem 1, given
a deterministic vector u ∈ RTL such that ∥u∥ ≤ O(1) and two deterministic matrices U,V
such that ∥U∥, ∥V∥ ≤ O(1) and a power r > 0, r ≤ O(1):

• E
[∣∣u⊤UQ̃−iVzi ∣∣r] ≤ O(1)

• E
[∣∣∣ 1TLz⊤i UQ̃−iVzi − E [ 1TLtr (ΣiU ¯̃QB)]∣∣∣r] ≤ O ( 1L r2 ).
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B.2.3 Deterministic equivalent of bilinear forms of the resolvent

To simplify the expression of the following theorem, we take A = ITL. One can replace Z
with A

1
2Z to retrieve the result necessary for the main paper.

Theorem 2. Under the setting of Theorem 1, with A = ITL, one can estimate for any de-
terministic matrices U,V ∈ RTL such that ∥U∥, ∥V∥ ≤ O(1) and any deterministic vector
u, v ∈ RTL such that ∥u∥, ∥v∥ ≤ 1, if one notes B = 1

TL
V or B = uv⊤, one can estimate:∣∣∣∣∣E [tr(BQ̃UQ̃)]−Ψ(U,B)− 1

TL
Ψ(U)⊤

(
In −

1

TL
Ψ

)−1
Ψ(B)

∣∣∣∣∣ ≤ O
(
1√
L

)
(B.2)

where we noted:

• ¯̃Q ≡ ¯̃Qδ(S), δ = δ(S),

• Ψ ≡ 1
TL

(
tr(Si ¯̃QSj ¯̃Q)
(1+δi )(1+δj )

)
i ,j∈[n]

∈ Rn,n

• ∀U ∈ Rn×n : Ψ(U) ≡ 1
TL

(
tr(U¯̃QSi ¯̃Q)
1+δi

)
i∈[n]
∈ Rn

• ∀U,V ∈ Rn×n : Ψ(U,V) ≡ 1
TL
tr
(
U ¯̃QV ¯̃Q

)
∈ R

If there exist T < n dinstinct matrices C1, . . . ,CT such that:

{S1, . . . ,Sn} = {C1, . . . ,CT} ,

and if we denote ∀t ∈ [T ] nt = #{i ∈ [n] | Si = Ct} and:

P ≡

IT −
 ntnv
(TL)2

tr
(
St
¯̃QSv
¯̃Q
)

(1 + δt)(1 + δv)


t,v∈[T ]

−1 ∈ RT,T
∀U ∈ RTL×TL : ¯̃Q2(U) ≡ ¯̃QU ¯̃Q+

1

(TL)2

T∑
t,v=1

tr(St
¯̃QU ¯̃Q)Pt,v

¯̃QSv
¯̃Q

(1 + δt)(1 + δv)
,

the result of Theorem 2 rewrites:∥∥∥E [Q̃UQ̃]− ¯̃Q2(U)∥∥∥ ≤ O( 1√
L

)
(B.3)

Proof. Given i ∈ [n], let us noteZ−i = (z1, . . . , zi−1, 0, zi+1, . . . , zn) and Q̃−i = ( 1TLZ−iZ
⊤
−i+

ITL)
−1, then we have the identity:

Q̃− Q̃−i =
1

TL
Q̃ziz

⊤
i Q̃−i and Q̃zi =

Q̃−izi

1 + 1
TL
z⊤i Q̃−izi

. (B.4)
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Given u, v ∈ RTL, such that ∥u∥, ∥v∥ ≤ 1, let us express:

E
[
1

TL
u⊤
(
Q̃− ¯̃Q

)
UQ̃v

]
=
1

n

n∑
i=1

E
[
u⊤Q̃

(
Si
1 + δi

− ziz⊤i
)
¯̃QUQ̃v

]
(B.5)

(B.6)

First, given i ∈ [n], let us estimate thanks to (B.4):

E
[
u⊤Q̃Si

¯̃QUQ̃v
]
= E

[
u⊤Q̃−iSi

¯̃QUQ̃v
]
−
1

TL
E
[
u⊤Q̃ziz

⊤
i Q̃−iSi

¯̃QUQ̃v
]

Hölder inequality combined with Lemma 2 allows us to bound:

1

TL

∣∣∣E [u⊤Q̃ziz⊤i Q̃−iSi ¯̃QUQ̃v]∣∣∣ ≤ 1

TL
E
[∣∣u⊤Q̃zi ∣∣2] 12 E [∣∣∣z⊤i Q̃−iSi ¯̃QUQ̃v∣∣∣2] 12 ≤ O(1L

)
,

one can thus deduce:

E
[
u⊤Q̃Si

¯̃QUQ̃v
]
= E

[
u⊤Q̃−iSi

¯̃QUQ̃v
]
+O

(
1

L

)
= E

[
u⊤Q̃−iSi

¯̃QUQ̃−iv
]
+O

(
1

L

)
.

(B.7)

Second, one can also estimate thanks to Lemma B.4:

E
[
u⊤Q̃ziz

⊤
i
¯̃QUQ̃v

]
= E

[
u⊤Q̃−iziz

⊤
i
¯̃QUQ̃v

1 + 1
TL
z⊤i Q−izi

]
= E

[
u⊤Q̃−iziz

⊤
i
¯̃QUQ̃v

1 + δi

]
+O

(
1√
d

)
,

again thanks to Hölder inequality combined with Lemma 2 that allow us to bound:

E

[∣∣∣∣∣ δi − 1
TL
z⊤i Q−izi

(1 + δi)
(
1 + 1

TL
z⊤i Q−izi

)∣∣∣∣∣ |u⊤Q̃−iziz⊤i ¯̃QUQ̃v|
]

≤ E

[∣∣∣∣δi − 1

TL
z⊤i Q−izi

∣∣∣∣2
] 1
2

E
[
|u⊤Q̃−iziz⊤i

¯̃QUQ̃v|2
] 1
2 ≤ O

(
1√
d

)
,

The independence between zi and Q̃−i (and
¯̃Q) then allow us to deduce (again with formula

(B.4)):

E
[
u⊤Q̃ziz

⊤
i
¯̃QUQ̃v

]
= E

[
u⊤Q̃−iSi

¯̃QUQ̃−iv

1 + δi

]
+
1

TL
E

[
u⊤Q̃−iziz

⊤
i
¯̃QUQ̃ziz

⊤
i Q̃−iv

1 + δi

]
+O

(
1√
d

)
.

(B.8)

Let us inject (B.7) and (B.8) in (B.5) to obtain (again with an application of Hölder inequality
and Lemma 2 that we do not detail this time):

E
[
u⊤Q̃

(
Si
1 + δi

− ziz⊤i
)
¯̃QUQ̃v

]
=
1

TL
E

[
u⊤Q̃−iziz

⊤
i
¯̃QUQ̃ziz

⊤
i Q̃−iv(

1 + 1
n
z⊤i Q̃−izi

)2
]
+O

(
1√
L

)
,
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=
1

TL

E
[
u⊤Q̃−iSiQ̃−iv

]
(1 + δi)

2 tr
(
Si
¯̃QU ¯̃Q

)
+O

(
1√
L

)
,

Putting all the estimations together, one finally obtains:∥∥∥∥∥∥E [Q̃UQ̃]− E
[
¯̃QU ¯̃Q

]
−

1

(TL)2

n∑
i=1

tr
(
Si
¯̃QU ¯̃Q

)
(1 + δi)

2 E
[
Q̃−iSiQ̃−i

]∥∥∥∥∥∥ ≤ O
(
1√
L

)
(B.9)

One then see that if we introduce for any V ∈ Rn×n the block matrices:

• θ = 1
TL
(
E[tr(Sj Q̃Si Q̃Y )]
(1+δi )(1+δj )

)i ,j∈[n] ∈ Rn×n

• θ(V) = 1
TL
(
E[tr(VQ̃Si Q̃Y )]

1+δi
)i∈[n] ∈ Rn,

• θ(U,V) = 1
TL
E
[
tr(VQ̃UQ̃Y )

]
∈ R,

then, if ∥V∥ ≤ O(1), multiplying (B.9) with V and taking the trace leads to:

θ(U,V) = Ψ(U,V) +
1

TL
Ψ(U)⊤θ(V) +O

(
1√
L

)
, (B.10)

Now, taking U = S1
1+δ1

, . . . , Sn
1+δn

, one gets the vectorial equation:

θ(V) = Ψ(V) +
1

TL
Ψθ(V) +O

(
1√
L

)
,

When (ITL − 1
TL
Ψ) is invertible, one gets θ(V) = (ITL − 1

TL
Ψ)−1Ψ(V) + O

(
1√
L

)
, and

combining with (B.10), one finally obtains:

θ(U,V) = Ψ(U,V) +
1

TL
Ψ(U)⊤(ITL −

1

TL
Ψ)−1Ψ(V) +O

(
1√
L

)
.

B.2.4 Estimation of the deterministic equivalent of Q2

Theorem 3. Under the setting of Theorem 2, one can estimate:∥∥E [Q2]− In +Dv∥∥ ≤ O( 1√
L

)
, (B.11)

with, ∀i ∈ [n]:

vi ≡
1

TL

tr
(
Si
¯̃Q
)

(1 + δi)2
+
1

TL

tr
(
Si
¯̃Q2(In)

)
(1 + δi)2
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Proof. The justifications are generally the same as in the proof of Theorem 2, we will thus
allow ourselves to be quicker in this proof.

Using the definition of Q =
(
Z⊤AZ
TL
+ In

)−1
, we have that

Z⊤Z

TL
Q =

(
Z⊤Z

TL
+ In − In

)(
Z⊤Z

TL
+ In

)−1
= In −Q (B.12)

and one can then let appear Q̃ thanks to the relation:

ZQ = Q̃Z, (B.13)

that finally gives us:

Q = In −
1

TL
Z⊤ZQ = In −

1

TL
Z⊤Q̃Z

One can then express:

Q2 = In −
2

TL
Z⊤Q̃Z+

1

(TL)2
Z⊤Q̃ZZ⊤Q̃Z

= In −
1

TL
Z⊤Q̃Z−

1

TL
Z⊤Q̃2Z.

Given i , j ∈ [n], i ̸= j , let us first estimate (thanks to Hölder inequality and Lemma 2):

1

TL
E
[
z⊤i Q̃zj

]
=
1

TL

E
[
z⊤i Q̃−i ,jzj

]
(1 + δi)(1 + δj)

+O

(
1√
d

)
≤ O

(
1√
d

)
,

since E[zi ] = E[zj ] = 0. Now, we consider the case j = i to get:

1

TL
E
[
z⊤i Q̃zi

]
=
1

TL

E
[
z⊤i Q̃−izi

]
(1 + δi)2

+O

(
1√
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)
=
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(
Si
¯̃Q
)

(1 + δi)2
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(
1√
d

)
.

As before, we know that 1
TL
E
[
z⊤i Q̃zj

]
≤ O

(
1√
d

)
if i ̸= j . Considering i ∈ [n], we thus

are left to estimate:

1

TL
E
[
z⊤i Q̃

2zj
]
=
1

TL
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(
Si
¯̃Q2(In)

)
(1 + δi)2

+O

(
1√
d

)

B.3 Risk Estimation (Proof of Theorem 4.3.1)

B.3.1 Test Risk

The expected value of theMSE of the test data x ∈ RT×TL concatenating the feature vector
of all the tasks with the corresponding response variable y ∈ RT×TH reads as
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R∞test =
1

T
E[∥y − g(x)∥22]

=
1

T
E
[
∥
x⊤W√
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x⊤AZQY
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∥22
]
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E
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+ ε−

x⊤AZQ(Z
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∥22

]
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T
E
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∥
x⊤W√
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x⊤AZQZ⊤W

TL
√
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−
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]
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T
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)
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+
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=
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1
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(
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)
+
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)
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+
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)
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=
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+
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+
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tr(ΣNQ̄2) +O

(
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d

)
The test risk can be further simplified as

R∞test = tr (ΣN) +
W⊤A−

1
2
¯̃Q2(A)A

− 1
2W

TL
+
tr
(
ΣNQ̄2

)
TL

+O

(
1√
d

)

B.3.2 Train Risk

In this section, we derive the asymptotic risk for the training data.

Theorem B.3.1 (Asymptotic training risk). Assuming that the training data vectors x(t)i
and the test data vectors x(t) are concentrated random vectors, and given the growth rate
assumption (Assumption 4.2.2), it follows that:
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R∞train ↔
1
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tr
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tr
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tr
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)
Proof. We aim in this setting of regression, to compute the asymptotic theoretical training
risk given by:

R∞train =
1

Tn
E

[∥∥∥∥Y − Z⊤AZTL
QY

∥∥∥∥2
2

]

Using the definition of Q =
(
Z⊤AZ
TL
+ ITL

)−1
, we have that

Z⊤AZ

TL
Q =

(
Z⊤AZ

TL
+ ITL − ITL

)(
Z⊤AZ

TL
+ ITL

)−1
= ITL −Q

Plugging back into the expression of the training risk then leads to

R∞train =
1

Tn
E
[
tr
(
Y⊤Q2Y

)]
Using the definition of the linear generative model and in particular Y = Z⊤W√

TL
+ ε, we get
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)]
To simplify this expression, we will introduced the so-called “coresolvent” defined as:

Q̃ =

(
A
1
2ZZ⊤A

1
2

TL
+ ITL

)−1
,

Employing the elementary relation A
1
2ZQ = Q̃A

1
2Z, one obtains:

1

TL
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1
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Therefore we further get

R∞train =
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E
[
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E
[
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[
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Using deterministic equivalents in Lemma 1, the training risk then leads to

R∞train =
1

Tn
tr
(
W⊤A−1/2 ¯̃QA−1/2W

)
−
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+
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)
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(
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B.4 Interpretation and insights of the theoretical anal-

ysis

B.4.1 Analysis of the test risk

We recall the test risk as

R∞test = tr (ΣN) +
W⊤A−

1
2
¯̃Q2(A)A

− 1
2W

TL
+
tr
(
ΣNQ̄2

)
TL

+O

(
1√
L

)

The test risk is composed of a signal term of a signal term S = W⊤A−
1
2 ¯̃Q2(A)A

− 12W
TL

and a

noise term N = tr(ΣNQ̄2)
TL

.

B.4.2 Interpretation of the signal term

Let’s denote by Σ̄ =
∑T

t=1
nTLt

TL(1+δt)2
Σ(t) and Σ̃ =

∑T
t=1

c0
1+δt
Σ(t). The signal term reads

as

S =W⊤A−
1
2
¯̃Q2(A)A

− 1
2W.

Using the following identity,

A−
1
2
¯̃Q2(A)A

− 1
2 = A−

1
2 Q̄A

1
2

(
I+ Σ̄

)
A
1
2 Q̄A−

1
2

=
(
AΣ̃+ I

)−1 (
I+ Σ̄

) (
AΣ̃+ I

)−1
This finally leads to

S =W⊤
(
AΣ̃+ I

)−1 (
I+ Σ̄

) (
AΣ̃+ I

)−1
W

The matrix H =
(
AΣ̃+ I

)−1 (
I+ Σ̄

) (
AΣ̃+ I

)−1
is responsible to amplifying the signal

W⊤W in order to let the test risk to decrease more or less. It is is decreasing as function
of the number of samples in the tasks nt . Furthermore it is composed of two terms (from
the independent training W⊤t W) and the cross term W⊤t Wv for t ̸= v . Both terms de-
creases as function of the number of samples nt , smaller values of γt and increasing value
of λ. The cross term depends on the matrix Σ−1t Σv which materializes the covariate shift
between the tasks. More specifically, if the features are aligned Σ−1t Σv = I and the cross
term is maximal while for bigger Fisher distance between the covariance of the tasks, the
correlation is not favorable for multi task learning. To be more specific the off-diagonal
term ofH are responsible for the cross term therefore for the multi tasks and the diagonal
elements are responsible for the independent terms.
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To analyze more the element of H, let’s consider the case where Σ(t) = I and γt = γ.
In this case the diagonal and non diagonal elements DIL and CMTL are respectively given
by

DIL =
(c0(λ+ γ) + 1)

2 + c20λ
2

(c0(λ+ γ) + 1)2 − c20λ2
, CMTL =

−2c0λ(c0(λ+ γ) + 1)
(c0(λ+ γ) + 1)2 − c20λ2

Both function are decreasing function of λ, 1/γ and c0.

B.4.3 Interpretation and insights of the noise terms

We recall the definition of the noise term N as

N = tr
(
ΣN
(
A−1 +Σ

)−1)
Now at the difference of the signal term there are no cross terms due to the indepen-
dence between the noise of the different tasks. In this case on the diagonal elements of
(A−1 +Σ)

−1 matters. This diagonal term is increasing for an increasing value of the sam-
ple size, the value of λ. Therefore this term is responsible for the negative transfer. In the
specific case where Σ(t) = Id and γt = γ for all task t , the diagonal terms read as

NNT =
(c0(λ+ γ)

2 + (λ+ γ)− c0λ2)2 + λ2

((c0(λ+ γ) + 1)2 − c20λ2)
2

B.4.4 Optimal Lambda

The test risk in the particular of identity covariance matrix can be rewritten as

R∞test = DIL
(
∥W1∥22 + ∥W2∥22

)
+ CMTLW

⊤
1W2 +NNT Tr(Σ)n.

DerivingR∞test with respect to λ leads after some algebraic calculus to

λ⋆ =
n

L
SNR−

γ

2

where the signal noise ratio is composed of the independent signal to noise ratio and the
cross signal to noise ratio SNR = ∥W1∥22+W2∥22

tr

(
Σn

) +
W⊤1W2

tr

(
Σn

)

B.5 Theoretical Estimations

B.5.1 Estimation of the training and test risk

The different theorems depends on the ground truthW that needs to be estimated through
Ŵ.
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To estimate the test risk, one needs to estimate functionals of the formW⊤MŴ and
ε⊤Mε for any matrix M. Using the expression of W = AZQY, we start computing
Ŵ⊤MŴ

Ŵ⊤MW = Y⊤QZ⊤AMAZQY

Using the generative model for Y = Z⊤W√
TL
+ ε, we obtain
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]
Employing the elementary relation A

1
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1
2Z, one obtains:
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Using the deterministic equivalent of Lemma 1, we obtain

Ŵ⊤MŴ↔W⊤MW − 2W⊤A−
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where We define the mapping κ : RTL×TL → RH×H as follows

κ(M) =M− 2A−
1
2
¯̃QA

1
2M+ A−

1
2
¯̃Q2(A

1
2MA

1
2 )A−

1
2 .

B.5.2 Estimation of the noise covariance

The estimation of the noise covariance remains a technical challenge in this process. How-
ever, when the noise covariance is isotropic, it is sufficient to estimate only the noise vari-
ance. By observing that

lim
λ→0,γ→∞

R∞train = σ2
Tr(Q)2
kn

,

we can estimate the noise level from the training risk evaluated at large γ and λ = 0.
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B.5.3 Empirical Estimation of Task-wise Signal, Cross Signal, and

Noise

All the quantities defined in Theorem 4.3.1 are known except for the bilinear expressions
1
TL
tr(W⊤MW) and 1

TL
tr (ΣNM). These quantities can be consistently estimated under

Assumptions 4.2.2 as follows :

1

TL
tr
(
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)
− ζ(M) a.s.−→ 0,

1

TL
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a.s.−→ 0
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1
2κ−1(M)A

1
2 ).

We define the estimate of the noise as σ̂ = lim
λ→0
γt→∞

R∞train and the function κ−1 is the

functional inverse of the mapping κ : RTL×TL → RH×H defined as follows:
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2
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1
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1
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1
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1
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1
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2
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1
2MA

1
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B.6 Application to Multi-task Regression

B.6.1 Related Work

High-Dimensional Regression Analysis. High-dimensional regression has been exten-
sively studied in single-task settings using RMT Dobriban & Wager, 2018 and other statis-
tical methods Gerbelot et al., 2022. These works typically focus on linear signal-plus-noise
models to derive test risk based on signal parameters and noise covariance. Our research
extends these concepts to MTL, providing unique insights into the effects of shared and
task-specific learning. Unlike previous studies, we offer a practical approach to estimate
asymptotic test risks and optimize hyperparameters, making our theoretical findings ac-
tionable within the MTL framework for multivariate forecasting.

B.6.2 Empirical vs. Theoretical Comparison

In our study, we apply the theoretical framework presented in our paper to a real-world
regression problem, specifically, the Appliance Energy dataset which aims to predict the
total usage of a house. This dataset is a multivariate regression dataset containing 138
time series, each of dimension 24. We select two of these features as 2 tasks to cast the
problem as a multi-task learning regression problem.

Figure B.1 presents a comparison between the theoretical predictions and empirical
outcomes of our proposed linear framework. Despite the assumptions made in the main
body of the paper, the theoretical predictions closely align with the experimental results.
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(a) Training MSE (b) Testing MSE

Figure B.1: Theoretical vs Empirical MSE as function of regularization parameter λ. Close
fit between the theoretical and the empirical predictions which underscores the robustness
of the theory in light of varying assumptions as well as the accuracy of the suggested
estimates. We consider the first two channels as the the two tasks and L = 144. 95
samples are used for the training and 42 samples are used for the test.

This demonstrates that our estimates are effective in practice and provide a reliable ap-
proximation of the optimal regularization.

In essence, our theoretical framework, when applied to real-world multi-task learning
regression problems, yields practical and accurate estimates, thereby validating its effec-
tiveness and applicability.

B.7 Additional Experiments

In this section, we present the results of our multi-task learning regularization framework
on the dataset ETTh1.

B.8 Limitations

While the study provides valuable insights through its theoretical analysis within a linear
framework, it is important to acknowledge its limitations. The linear approach serves as
a solid foundation for understanding more complex models, but its practical applications
may be constrained. Linear models, though mathematically tractable and often easier to
interpret, might not fully capture the intricacies and nonlinear relationships present in
real-world data, especially in the context of multivariate time series forecasting.

To address this limitation, we decided to extend our algorithm’s application to more
complex models, specifically within the nonlinear setting of neural networks. This transi-
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Figure B.2: Results for dataset ETTh1 on the PatchTST, DLinearU, and Transformer base-
lines, averaged across 3 seeds for each gamma and lambda setting.

– 170 –



Appendices

tion aims to evaluate whether the theoretical insights derived from the linear framework
hold true empirically when applied to neural networks. As part of this endeavor, an opti-
mal parameter lambda was selected by an oracle, leading to promising results, as detailed
in Section 4.4.2. This oracle-based selection underscores the potential efficacy of our ap-
proach when appropriately tuned, even in more complex, nonlinear contexts.

It is important to note that the limitations are not related to the real-world data itself,
as our setting performs well in the context of multi-task regression for real-world data, as
shown in Section B.6. The difficulty arises from transitioning from a linear to a nonlinear
model. The results in Section 4.4.2 are particularly encouraging, demonstrating that our
method can improve upon univariate baselines by regularizing with an optimal lambda,
as indicated by our oracle. While the oracle provides an upper bound on performance,
actual implementation would require robust methods for hyperparameter optimization in
non-linear scenarios, which remains an open area for further research.

By expanding the scope of our theoretical framework to encompass nonlinear models,
we pave the way for future work that could focus on the theoretical analysis of increasingly
complex architectures.
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